1、耐火材料的组成和性质
耐火材料的一般性质,包括化学矿物组成、组织结构、力学性质、热学性质和高温使用性质。其中有些是在常温下测定的性质,例如气孔率、体积密度、真密度和耐压强度等。根据这些性质,可以预知耐火材料在高温下的使用情况;另一些是在高温下测定的性质,例如耐火度、荷重软化点、热震稳定性、抗渣性、高温体积稳定性等,这些性质反映在一定温度下耐火材料所处的状态,或者反映在该温度下它与外界作用的关系。
1.1、 耐火材料的化学矿物组成
耐火材料的若干性质,取决于其中的物相组成、分布及各相的特性,即取决于制品的化学矿物组成。对于既定的原料,即化学矿物组成一定时,可以采用适当的工艺方法,获得具有某种特性的物相组成(如晶型、晶粒大小、分布以及形成固溶体和玻璃相等),在一定限度内提高制品的工作性质。
1.1.1化学组成
通常将耐火材料的化学组成按各成分含量和其作用分为两部分,即占绝对多量的基本成分-主成分和占少量的从属的副成分。副成分是原料中伴随的夹杂成分和工艺过程中特别加入的添加成分(加入物)。
1.1.1.1、 主成分
它是耐火制品中构成耐火基体的成分,是耐火材料的特性基础。它的性质和数量直接决定制品的性质。其主要成分可以是氧化物,也可以是元素或非氧化物的化合物。耐火材料按其主成分的化学性质又可分为三类:酸性耐火材料、中性耐火材料及碱性耐火材料。
酸性耐火材料含有相当数量的游离二氧化硅(SiO2)。酸性最强的耐火材料是硅质耐火材料,几乎由94-97%的游离硅氧(SiO2)构成。粘土质耐火材料与硅质相比,游离硅氧(SiO2)的量较少,是弱酸性的。半硅质耐火材料局于其间。
中性耐火材料按其严密含意来说是碳质耐火材料,高铝质耐火材料(Al2O345%以上)是偏酸而趋于中性耐火材料,铬质耐火材料是偏碱而趋于中性耐火材料。
碱性耐火材料含有相当数量的MgO和CaO等,镁质和白云石质耐火材料是强碱性的,铬镁系和镁橄榄石质耐火材料以及尖晶石耐火材料属于弱碱性耐火材料。
1.1.1.2、杂质成分
耐火材料的原料绝大多数是天然矿物,在耐火材料(或原料)中含有一定量的杂质。这些杂质是某些能与耐火基体作用而使其耐火性能降低的氧化物或化合物,即通常称为熔剂的杂质。例如镁质耐火材料化学成分中的主成分是MgO,其它氧化物成分均属于杂质成分。因杂质成分的熔剂作用使系统的共熔液相生成温度愈低。单位熔剂生成的液相量愈多,且随温度升高液相量增长速度愈快,粘度愈小,润湿性愈好,则杂质熔剂作用愈强。
1.1.1.3、添加成分
在耐火制品生产中,为了促进其高温变化和降低烧结温度,有时加入少量的添加成分。按其目的和作用不同分为矿化剂、稳定剂和烧结剂等。通常分析耐火制品和原料的灼烧减量、各种氧化物含量和其它主要成分含量。将干燥的材料在规定温度条件下加热时质量减少百分率称为灼减。
1.1.2、矿物组成
耐火制品是矿物组成体。制品的性质是其组成矿物和微观结构的综合反映。耐火制品的矿物组成取决于它的化学组成和工艺条件。化学组成相同的制品,由于工艺条件的不同,所形成矿物相的种类、数量、晶粒大小和结合情况的差异,使其性能可能有较大差异。例如SiO2含量相同的硅质制品,因SiO2在不同工艺条件下可能形成结构和性质不同的两类矿物-磷石英和方石英,使制品的某些性质会有差异。即使制品的矿物组成一定,但随矿相的晶粒大小、形状和分布情况的不同,亦会对制品性质有显著的影响(如熔融制品)。
耐火材料一般是多项组成体,其中的矿物相可分为两类,即结晶相和玻璃相。
主晶相是指构成制品结构的主体且熔点较高的晶相。主晶相的性质、数量和其间结合状态直接决定着制品的性质。
基质是指耐火材料中大晶体或骨料间隙中存在的物质。基质对制品的性质(如高温特性和耐侵饰性)起着决定性的影响。在使用时制品往往首先从基质部分开始损坏,采用调整和改变制品的基质成分是改善制品性能的有效工艺措施。
绝大多数耐火制品(除少数特高耐火制品外),按其主晶相和基质的成分可以分为两类:一类是含有晶相和玻璃相的多成分耐火制品,如粘土砖、硅砖等;另一类是仅含晶相的多成分制品,基质多为细微的结晶体,如镁砖、铬镁砖等碱性耐火材料。这些制品在高温烧成时,产生一定数量的液相,但是液相在冷却时并不形成玻璃,而是形成结晶性基质,将主晶相胶结在一起,基质晶体的成分不同于主晶相。
耐火制品的显微组织结构有两种类型。一种是由硅酸盐(硅酸盐晶体矿物或玻璃体)结合物胶结晶体颗粒的结构类型,另一种是由晶体颗粒直接交错结合成结晶网,例如高纯镁砖,这种直接结合结构类型的制品的高温性能(高温力学强度、抗渣性或热震稳定性等)较前一种优越得多;因此具有广阔得发展前景。
1.2、 耐火材料的组织结构
耐火材料是由固相(包括结晶相和玻璃相)和气孔两部分构成的非均质体,其中各种形状和大小的气孔与固相之间的宏观组织结构。
1.2.1气孔率、体积密度、真密度
气孔率、体积密度、真密度等是评价耐火材料质量的重要指标。GB/T2997有十个定义:体积密度(带有气孔的干燥材料的质量与其总体积的比值,用g/cm3或kg/m3表示)、总体积(带有气孔的材料中固体物质、开口气孔及闭口气孔的体积总和)、真密度(带有气孔的干燥材料的质量与其真体积之比值,用g/cm3或kg/m3表示)、真体积(带有气孔的材料中固体物质的体积)、开口气孔(浸渍时能被液体填充的气孔)、闭口气孔(浸渍时不能被液体填充的气孔)、显气孔率(带有气孔的材料中所有开口气孔的体积与总体积之比值,用%表示)、闭口气孔率(带有气孔的材料中所有闭口气孔的体积与总体积之比值,用%表示)、真气孔率(显气孔率和闭口气孔率的,用%表示)、致密定形耐火制品(真气孔率小于45%的定形耐火制品)。
GB/T2997得测定原理:称量试样的质量,再用液体静力称量法测定其体积,计算显气孔率、体积密度,或根据试样的真密度计算真气孔率。
1.2.1.1气孔率
耐火材料内的气孔是由原料中气孔和成型后颗粒间的气孔所构成。大致可分为三类:1)闭口气孔,它封闭在制品中不与外界相通;2)开口气孔,一段封闭,另一段与外界相通,能为流体填充;3)贯通气孔,贯通制品的两面,能为流体通过;为简便起见,通常将上述三类气孔合并为两类,即开口气孔(包括贯通气孔)和闭口气孔。一般开口气孔体积占总气孔体积的绝对多数,闭口气孔的体积则很少,闭口气孔体积难于直接测定,因此,制品的气孔率指标,常用开口气孔率(亦称显气孔率)表示。
真气孔率(总气孔率)A=(V1+V2)Χ100%/V0,开口气孔率(显气孔率)B=V1Χ100%/V0式中:V0、V1、V2分别代表总气孔体积、开口气孔体积和闭口气孔体积(CM3).
1.2.1.2吸水率
它是制品中全部开口气孔吸满水的质量与其干燥质量之比,以百分率表示,它实质上是反映制品中开口气孔量的一个技术指标,由于其测定简便,在生产中多直接用来鉴定原料煅烧质量。烧结良好的原料,其吸水率数值应较低。
1.2.1.3体积密度
表示干燥制品的质量与其总体积之比,即制品单位体积(表观体积)的质量,用g/cm3表示。
体积密度也是表征制品致密程度的主要指标,密度较高时,可减少外部侵入介质(液相或气相)对耐火材料作用的总面积,从而提高其使用寿命,所以致密化是提高耐火材料质量的重要途径,通常在生产中应控制原料煅烧后的体积密度,砖坯的体积密度和制品的烧结程度。
1.2.1.3真密度
GB/T5071标准有两个定义:真密度(带有气孔的干燥材料的质量与其真体积之比值,用g/cm3或kg/m3表示)、真体积(带有气孔的材料中固体物质的体积)。
GB/T5071标准的测定原理:把试样破碎,磨碎,使之尽可能不存在有封闭气孔,测量其干燥的质量和真体积,从而测得真密度。细料的体积用比重瓶和已知密度的液体测定,所用液体温度必须控制或仔细地测量。
真密度是指不包括气孔在内的单位体积耐火材料的质量,可用下式表示。
d真=G/[V0-(V1+V2)],式中 G-干燥试样质量,g;V0、V1、V2——分别为试样的总体积,开口气孔体积,闭口气孔体积,cm3。