品牌:nyu
起订:1台
供应:10台
发货:30天内
信息标签:MASCIS Impactor NYU脊髓损伤模型打击器,供应,仪器仪表,试验机
The MASCIS Impactor is a device designed to deliver graded reproducible spinal cord contusions in rats. Developed over ten years ago, the Impactor is part of a well-defined rodent spinal cord injury model that is used in over 100 laboratories around the world. In addition, more than 50% of recent publications on spinal cord injury research used the MASCIS Impactor. Most of the recommended procedures for the Impactor are based on experience with the model and work done by the Multicenter Animal Spinal Cord Injury Study (MASCIS).
The Impactor is now in its third generation with many improvements over previous models. It is available in a model with data recording capability (de
Clamping systems are available for both rat and mouse. A clamping system is necessary for the Rutgers basic model and serves as a functional enhancement for the MASCIS model. (de
The MASCIS Impactor, formerly called the NYU Impactor, was developed in 1991 by Drs. John
Gruner, Carl Mason, and Wise Young. It is now used in laboratories throughout the world in their
spinal cord injury studies. The device precisely measures the movement of a 10-gram rod
dropped 12.5, 25.0, or 50.0 mm onto the T9-10 spinal cord exposed by laminectomy. In
addition, the device measures movement of the spinal column at the impact site, displays the
trajectory of the falling rod, and measures the impact velocity (ImpV), cord compression
distance (Cd), cord compression time (Ct), and cord compression rate (Cr). These impact
parameters correlate with each other and spinal cord lesion volumes (estimated from tissue Na
and K concentrations) and locomotor recovery (BBB scores).
1:Serial changes in bladder, locomotion, and levels of neurotrophic factors in rats with spinal cord contusion.
Hyun JK, Lee YI, Son YJ, Park JS.
Department of Rehabilitation Medicine, Dankook University, Cheonan, Korea. rhhyun@dankook.ac.kr
2:A re-assessment of minocycline as a neuroprotective agent in a rat spinal cord contusion model.
Pinzon A, Marcillo A, Quintana A, Stamler S, Bunge MB, Bramlett HM, Dietrich WD.
Brain Res. 2008 Dec 3;1243:146-51. Epub 2008 Sep 24.
3 :The role of cation-dependent chloride transporters in neuropathic pain following spinal cord injury.
Cramer SW, Baggott C, Cain J, Tilghman J, Allcock B, Miranpuri G, Rajpal S, Sun D, Resnick D.
Mol Pain. 2008 Sep 17;4:36.
4:Novel combination strategies to repair the injured mammalian spinal cord.
Bunge MB.
J Spinal Cord Med. 2008;31(3):262-9. Review.
5:A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury.
Pinzon A, Marcillo A, Pabon D, Bramlett HM, Bunge MB, Dietrich WD.
Exp Neurol. 2008 Sep;213(1):129-36. Epub 2008 Jul 14.
6: B1 and TRPV-1 receptor genes and their relationship to hyperalgesia following spinal cord injury.
DomBourian MG, Turner NA, Gerovac TA, Vemuganti R, Miranpuri GS, Türeyen K, Satriotomo I, Miletic V, Resnick DK.
Spine. 2006 Nov 15;31(24):2778-82.
7:Endothelial cell loss is not a major cause of neuronal and glial cell death following contusion injury of the spinal cord.
Casella GT, Bunge MB, Wood PM.
Exp Neurol. 2006 Nov;202(1):8-20. Epub 2006 Jul 26.
8:Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord.
Himes BT, Neuhuber B, Coleman C, Kushner R, Swanger SA, Kopen GC, Wagner J, Shumsky JS, Fischer I.
Neurorehabil Neural Repair. 2006 Jun;20(2):278-96.
9:Mechanical and cold allodynia in a rat spinal cord contusion model.
Yoon YW, Dong H, Arends JJ, Jacquin MF.
Somatosens Mot Res. 2004 Mar;21(1):25-31.
10:Spinal cord contusion models.
Young W.
Prog Brain Res. 2002;137:231-55. Review.