雷诺士特点 1、电池抗深放电能力强,100%放电后仍可继续接在负载上,在四星期内充电可恢复原容量。 2、由于电池为胶状固体,所以电解质浓度均匀,不存在酸分层现象。 3、酸浓度低,对极板腐蚀弱,并采用独特的管式极板,因此电池寿命长。 4、电池极板采用无锑合金,电池自放电极低。20°C下存放两年后,还有50%以上的容量,即两年内不需补充电。 5、**的承受深放电及大电流放电能力,具有过充及过放电自我保护性能。 6、凝胶电解质,无内部短路。热容量大,热消散能力强,能避免一般蓄电池易产生的热失控现象,因而在高温操作时极为可靠,电池不会产生“干化”现象,工作温度范围宽。 7、采用高灵敏低压伞型气阀,使蓄电池使用更加安全可靠。铅酸蓄电池自问世以来,始终跳不出实际使用寿命短,提前报废的怪圈,如普通铅酸蓄电池设计寿命为2-3年,实际只能使用一年或更短的时间。有的蓄电池由于贮存时间过长,未经使用就已失效报废,造成能源的极大浪费。蓄电池使用寿命短,主要原因是在正常的使用过程中,化学能转变电能的同时也会自然产生硫化,在极板上形成一层硫酸铅结晶体,随着时间的推移,这些结晶体沾附在极板上的面积越来越大,越来越厚,将极板微孔堵塞,使产生化学反应的活性物质越来越少,极板不能正常工作。蓄电池容量越来越低,严重时造成蓄电池寿命终止,这是自然原因造成的。但更多的情况是人为原因造成的,原因多为使用、储存不当。
6 阀控铅酸蓄电池的失效模式
6.1 干涸失效模式
从阀控铅酸蓄电池中排出氢气、氧气,水蒸气、酸雾,都是电池失水的方式和干涸的原因。电池干涸失效是阀控铅酸蓄电池所特有的。失水的原因有以下几种:
①气体再化合的效率低。
②从电池壳体蒸发水。
③板栅腐蚀消耗水。
④自放电损失水。
6.1.1 气体再化合效率
气体再化合效率与选择浮充电压关系很大。电压选择过低,虽然氧气析出少,复合效率高,但个别电池会由于长期充电不足造成负极盐化而失效,使电池寿命缩短。浮充电压选择过高,气体析出量增加,气体再化合效率低,虽避免了负极失效,但安全阀频繁开启,失水多,正极板栅也有腐蚀,影响电池寿命。
6.1.2 从电池壳体蒸发水
电池壳体的渗透率,除取决于壳体材料种类、性质外,还与其壁厚,壳体内外间水蒸气压差有关。虽然有些壳体材料的水蒸气渗透率较大,但强度好,所以仍然得到广泛的应用。
6.1.3 板栅腐蚀
板栅腐蚀也会造成水分的消耗。
6.1.4 自放电
正极自放电析出的氧气可以在负极再化合而不至于失水,但负极出析的氢不能在正极复合,会在电池累积,从安全阀排出而失水,尤其是电池在较高温度下贮存时,自放电加速。
6.2 容量过早损失的失效模式
阀控铅酸蓄电池早期容量损失常容易在如下条件发生:
①不适宜的循环条件,诸如连续高速率放电、深放电、充电开始时低的电流密度。
②缺乏特殊添加剂如Sb、Sn、H3PO4。
③低速率放电时高的活性物质利用率、电解液高度过剩,极板过薄等。
④活性物质视密度过低,装配压力过低等。
6.3 热失控的失效模式
大多数电池体系都存在发热问题,在阀控铅酸蓄电池中可能性更大,这是由于:氧再化合过程使电池内产生更多的热量;排出的气体量小,减少了热的消散;
若阀控铅酸蓄电池工作环境温度过高,或充电设备电压失控,则电池充电量会增加过快,电池内部温度随之增加,电池散热不佳,从而产生过热,电池内阻下降,充电电流又进一步升高,内阻进一步降低。如此反复形成恶性循环,直到热失控使电池壳体严重变形、涨裂。为杜绝热失控的发生,要采用相应的措施:
①充电设备应有温度补偿或限流功能。
②严格控制安全阀质量,以使电池内部气体正常排出。
③蓄电池要安装在通风良好的位置,并控制电池温度。
6.4 负极不可逆硫酸盐化
汤浅蓄电池 http://www.tangqiandianchiw.com/
理士蓄电池 http://www.bjxdc2013.com/ 正常条件下,铅蓄电池在放电时形成的硫酸铅结晶,在充电时能较容易地还原为铅。如果电池使用和维护不当,例如经常处于充电不足或过放电,负极就会逐渐形成一种粗大坚硬的硫酸铅,它几乎不溶解,用常规方法充电很难使它转化为活性物质,从而减少了电池容量,甚至成为蓄电池寿命终止的原因,这种现象称为极板的不可逆硫酸盐化。为了防止负极发生不可逆硫酸盐化,必须对蓄电池及时充电,不可过放电。
6.5 板栅腐蚀
在铅酸蓄电池中,正极板栅比负极板栅厚,原因之一是在充电时,特别是在过充电时,正极板栅要遭到腐蚀,逐渐被氧化成二氧化铅而失去板栅的作用,为补偿其腐蚀量必须加粗加厚正极板栅。所以在实际运行过程中,一定要根据环境温度选择合适的浮充电压,浮充电压过高,除引起水损失加速外,也引起正极板栅腐蚀加速。电池的设计寿命是按正极板栅合金的腐蚀速率进行计算的,正极板栅被腐蚀的越多,电池的剩余容量就越少;电池寿命就越短。
7 阀控式铅酸蓄电池的自放电
7.1 自放电的原因电池的自放电是指电池在存储期间通过内电路放电,致使容量降低的现象。自放电通常主要在负极,因为负极活性物质为较活泼的海绵状铅电极,可发生置换反应。若在电极中存在着析氢过电位低的金属杂质,这些杂质和负极活性物质能组成腐蚀微电池,结果负极金属自溶解,并伴有氢气析出,从而容量减少。在电解液中杂质起着同样的有害作用。一般正极的自放电不大。正极为强氧化剂,若在电解液中或隔膜上存在易于被氧化的杂质,也会引起正极活性物质的还原,从而减少容量。