品牌:西门子
起订:1台
供应:9999台
发货:1天内
信息标签:西门子6SL3000-0CE33-3AA0,供应,电子、电工,工控系统及装备
西门子6SL3000-0CE33-3AA0 西门子6SL3000-0CE33-3AA0
上海隆彦自动化设备有限公司(西门子代理商) 联系人 李 工 |
||
全国直销: 15800846971 |
|
|
现货销售: | 021-61311951 | |
腾讯咨询: | 3192212451 | |
100%的西门子进货渠道给你100%的放心品质。
|
上海隆彦自动化设备有限公司主要经营: 西门子PLC模块,s7-200CN、s7-300、s7-400、s7-1200、ET200,西门子变频器,西门子触摸屏,西门子交换机,西门子工控机,西门子V80伺服系统,西门子V90伺服系统,西门子DP总线,西门子总线连接器
根据实际应用情况,SIMOREG®直流驱动系统经常是价格**有利的驱动器解决方案。在可靠性、操作友好性和性能方面有许多优点。如果您正在寻找具有**经济有效性的直流驱动系统解决方案,那么您完全可以信赖具有**高输出和集成智能能力的 SIMOREG DC-MASTER 驱动器调速器。具体说来,它们具有西门子产品**的特点:全集成自动化。这意味着您可以从它们能够完全的集成到西门子系统环境中获益:在进行工程组态/组态和编程时,使用公共的数据库和集成通讯方式——使您可以在多方面节省资金!
西门子 SIMOREG 产品系列可以通过简单、同意的操作员控制体系进行自我诊断。无需编程知识,所有的设置都可以全部用电子方式完成。如果您对用户友好性的进行试运行感兴趣,那么通过一台 PC 就可以实现带菜单提示的启动调试。
此外,SIMOREG DC-MASTER 采用 BICO 技术,提高了软件的功能性,可以有效的缩短工程组态时间,并降低成本。
SIMOREG DC-MASTER 系列现有多种版本——在输出范围上从
6.3 kW 到 2500 kW,还包括电枢和励磁供电、单机和四象限驱动系统等版本。
它可以完全集成到任何自动化环境中
可以用模块方式扩展——从标准应用到高性能解决方案
通过并联**高可扩展到 18000A
额定供电电压 400V到 950V
通过对所有设置全部实现电子方式的参数化缩短了试运行时间
统一的操作员控制体系
SIMOVERT MASTERDRIVES 超紧凑型
SIMOVERT MASTERDRIVES 是交流变频器。它们可将交流电机转变为高精度可变速驱动器。此系列驱动器在全球范围内通用,适用于 230 - 690 V 范围内的全部供电电压,并且进行了全球范围的认证。
SIMOVERT MASTERDRIVES 是一个变频器系统。它们是一种模块化的单元系列,可**满足每一种应用要求,并可在所有工业领域内使用。它们拥有可满足各种要求的**闭环控制:SIMOVERT MASTERDRIVES VC 采用频率控制和矢量控制,而 SIMOVERT MASTERDRIVES MC 采用适用于极高动态性能的伺服控制。 极为节省空间的电源
西门子具有超紧凑设计的 SIMOVERT MASTERDRIVES 系列变频器完美适合需要在极小空间内提供极高额定功率的所有应用。这个变频器系统现已通过逆变器(直流转交流装置)进行扩展,功率高达 37 kW (50 HP)。
请阅读或订购我们的市场营销资料。
SIMOVERT MASTERDRIVES 经过设计,已进行**的统一:它们拥有统一的操作员控制方式,可根据需要进行组合,甚至可带有具有不同控制方式的单元,并且在设计上也是统一的。不管是单个驱动器还是多电机驱动器,它们始终会以系统模块的形式提供**解决方案。
功能特点
可进行模块化扩展:使用操作员控制面板、终端扩展模块、制动模块、输入和输出滤波器
转速和转矩精度较高
具有优异的动态性能
在低转速下具有极平稳的运行特性
具有较高过载能力
具有较高功率密度
具有**性价比
可使用 PATH 方便、友好地进行组态
输出范围
0.55 - 710 kW SIMOVERT MASTERDRIVES MC (400V)
2.2 - 6000 kW SIMOVERT MASTERDRIVES VC
SINAMICS G130 内置式变频器设计用于机器制造和工厂建设中使用的交流变频器。
具有较高性能, 可满足各种负载类型的单电机驱动应用。
无传感器矢量控制的控制精度适合大多数应用,因此,无需使用附加实际转速编码器。
SINAMICS G130 可以提供一种经济的驱动解决方案,它能够通过丰富的组件和选配件满足各种各样的用户需求。
电源电压: |
输出范围: |
供电系统: |
TN/TT 或 IT |
线路频率: |
47 ~ 63 Hz |
输出频率: |
0 ~ 300 Hz |
控制方法: |
带编码器的闭环矢量控制或 V/f 控制 |
固定频率: |
15 个固定频率加 1 个基本频率,可编程 |
跳跃频率频带: |
4,可编程 |
用户接线排: |
数字量输入/输出 |
通讯接口: |
标配 PROFIBUS DP 接口 |
制动模式: |
制动模式作为系统组件 |
防护等级: |
IP00 |
冷却方式: |
内部风扇(强制空气冷却) |
噪声等级: |
≤ 72 dB (A),50 Hz 电源频率下 |
法规符合性: |
CE, cULus(不久将可供货) |
软件功能: |
- 因电源故障而发生操作中断时可自动重新启动 |
保护功能: |
电机和电源部分的热监视 |
安全功能: |
STO, SS1 (驱动系统的集成安全性功能) |
适宜的电机: |
感应电机 |
SINAMICS G130 变频装置为系统集成商和机器制造商提供了一种可满足特定应用要求的模块化传动系统.
SINAMICS G130 变频器由两个独立的模块部分组成:
- 功率单元
- 控制单元
控制单元可单独放置,也可内置在装置中。功率单元内留有一个插槽,用于安装控制单元.
通过端子板或PROFIBUS端口轻松实现对变频器的调试和控制。 界面友好的AOP30高级操作面板可进行启动和本地操控。控制模块可通过控制单元上的附加选件进行扩充。
SINAMICS G130 和 SIMATIC S7 组态举例
西门子6SL3000-0CE33-3AA0
PLC延时控制阶梯灯梯形图编程举例
阶梯灯的定时点亮的应用
本例程序是用来点亮阶梯灯。不同层上的ON按钮都被接到控制输入端I0.0。当按下I0.0的ON按钮,则输出端Q0.0的灯发光30秒,如果在这段时间内又一次按ON按钮,则时间间隔又得从头开始。这样可确保在**后一次按ON按钮,在30秒内灯光小会熄灭。
程序框图
程序和注释
如果按ON按钮,使输入I0.0的ON信号有效(I0.0=1),则定时器位T37复位(T37=0)。因而定时器T37从头开始计时。与此同时,输出Q0.0被置位(Q0.0=1,灯亮)。当计足30秒,定时器位T37置位(T37=1),那将又一次使输出Q0.0为off (Q0.0=0,灯灭)。
本程序的长度为17个字。
可编程控制器的结构特点
1 . 单元式
单元式的特点是结构紧凑。它将所有的电路都装入一个模块内,构成一个整体,这样体积小巧、成本低、安装方便。
FX2 系列可编程控制器由基本单元、扩展单元、扩展模块及特殊适配器等四种产品构成。仅用基本单元或将上述各种产品组合起来使用均可。
基本单元( M ):内有 CPU 与存贮器,为必用装置。
扩展单元( E ) : 要增加I/O点数时使用的装置。
可利用扩展模块,以 8 为单位增加输入/输出点数。也可只增加输入点数或只增加输出点数,因而使输入/输出的点数比率改变。
2 .模块式
模块式可编程控制器采用搭积木的方式组成系统,在一块基板上插上 CPU 、电源、I/O模块及特殊功能模块,构成一个总I/O点数很多的大规模综合控制系统。
这种结构形式的特点是 CPU 为独立的模块 , 输入、输出也是独立模块。
3 .叠装式
它的结构也是各种单元、 CPU 自成独立的模块,但安装不用基板,仅用电缆进行单元间联接,且各单元可以一层层地叠装。
FX2 系列 PLC 是单元式和模块式相结合的叠装式结构。
PLC主要有哪些应用?
PLC经过不断地发展,一般都具有“开关I/0、模拟I/0、网络通信”功能;然而,工程师们只需要使用开关I/O、少量的模拟I/O、以及简单的编程技巧,就可开发出约80%的工业应用。
①(单机独立完成)开关量的采集与控制
如:电动机的启停、定时控制,电磁阀的开阀、关阀控制,仓库门的开门、关门控制,产品的计数控制,机械手、生产线、组合机床、电梯等设备的运行控制,等等。
②(单机独立完成)模拟量的采集与控制
如:温度、压力、流量等过程量的采集与PID控制,位移、速度等运动量的采集与控制。
③(与上位机连网)作为高级系统(如集散型控制系统DCS)现场端的采集器和控制器
1-n台PLC与上位机(工控机IPC、人机界面HMI等)连网通信,由上位机实现“集中管理”,由PLC实现“分散采集+分散控制”/或“集中采集+集中控制”。
1985年,国际电工委员会(IEC)对PLC作出如下定义:
可编程控制器PLC是一种数字运算操作的电子系统,专为在工业环境应用而设计;它采用一类可编程的存储器,用于其内部存储程序,执行逻缉运算、顺序控制、定时、计数与算术运算等操作指令,并通过数字、模拟式的输入、输出,控制各种类型的机械或生产过程;可编程控制器及其有关外围设备的设计,都要按照“易于与工业控制系统联成一个整体、易于扩充功能的原则”进行。
由该定义可知:PLC是一种由“事先存贮的程序”来确定控制功能的工控类计算机。
20世纪60年代,汽车生产线的自控系统基本上由继电器控制装置构成。当时汽车的每一次改型都直接导致继电器控制装置的重新设计和安装。随着生产的发展,汽车型号更新的周期变短,因而继电器控制装置就需要经常地重新设计和安装,这不仅费时、费工、费料,甚至阻碍了更新周期的缩短。为了改变这一现状,美国通用汽车公司在1969年公开招标,希望用新的控制装置来取代继电器控制装置,并提出了以下10项招标指标:
①编程方便,现场可修改程序;
②维修方便,采用模块化结构;
③可靠性高于继电器控制装置;
④体积小于继电器控制装置;
⑤数据可直接送入起管理作用的(上位)计算机;
⑹成本可与继电器控制装置竟争;
⑺输入可以是交流115V(注:我们中国是AC220V);
⑻输出为(交流115V,2A以上),能直接驱动电磁阀、接触器等;
⑼在扩展时,原系统只需要进行很小的变更;
⑽用户程序存储器容量至少能扩展到4KB。
1969年,美国数字设备公司(DEC)研制出**台PLC,并在美国通用汽车自动装配线上试用,获得了成功。这种新型的工控装置,以其体积小、可变性好、可靠性高、使用寿命长、简单易懂、操作维护方便等一系列优点,很快就在美国的许多行业里得到推广应用。到1971年,已经成功地应用于食品、饮料、冶金、造纸等行业。
这一新型的工控装置的出现,受到**上许多国家的高度重视。1971年,日本从美国引进了这项新技术,很快研制出了他们的第1台PLC。1973年,西欧国家也研制出他们的第1台PLC。我国从1974年始研制,到1977年开始应用于工控领域。
早期的PLC,一般称为“可编程逻辑控制器”(Programmable Logic Controller)。这时的PLC基本上是(硬)继电器控制装置的替代物,主要用于实现原先由继电器完成的顺序控制、定时、计数等功能。它在硬件上以“准计算机”的形式出现,在I/O接口电路上做了改进以适应工控现场要求。装置中的器件主要采用分立元件和中小规模集成电路,并采用磁芯存储器。另外,还采取了一些措施,以提高抗干扰能力。在软件编程上,采用类似于电气工程师所熟悉的继电器控制线路的方式——梯形图(Ladder)语言。因此,早期的PLC的性能要优于继电器控制装置,其优点是简单易懂、便于安装、体积小、能耗低、有故障显示、能重复使用等。其中PLC特有的编程语言——梯形图语言一直沿用至今。
20世纪70年代,微处理器的出现使PLC发生了巨变。美国、日本、德国等一些厂家先后开始采用微处理器作为PLC的CPU(中央处理单元),这样使PLC的功能大大增强。在软件方面,除了保持原有的逻缉运算、计时、计数等功能以外,还增加了算术运算、数据处理、网络通信、自诊断等功能。在硬件方面,除了保持原有的开关模块以外,还增加了模拟量模块、远程I/O模块、各种特殊功能模块,并扩大了存储器的容量,而且还提供一定数量的数据寄存器。
到了20世纪80年,由于超大规模集成电路技术的迅速发展,微处理器价格大幅度下跌,使得各种类型的PLC所采用的微处理器的档次普遍提高。早期的PLC一般采用8位的CPU,现在的PLC一般采用16位或32位的CPU。另外,为了进一步提高PLC的处理速度,各制造厂还纷纷研制开发出专用的逻辑处理芯片,这就使得PLC的软、硬件功能有了巨变。
目前,**上约有200家PLC生产厂商,其中,美国的Rockwell、GE,德国的西门子(Siemens),法国的施耐德(Schneider),日本的三菱、欧姆龙(Omron),他们掌控着全**80%以上的PLC市场份额,他们的系列产品从只有几十个点(I/O总点数)的微型PLC到有上万个点的巨型PLC,应有尽有。
经过多年的发展,国内PLC生产厂家约有三十家,但尚未形成颇具规模的生产能力,国内PLC应用市场仍然以国外产品为主,如:Siemens的S7-200小系列、S7-300中系列、S7-400大系列,三菱的FX小系列、Q中大系列,0mron的CPM小系列、C200H中大系列等。
值得一提的是,湖北黄石的科威自控公司(www.kwzk.com)的创新产品——“嵌入式PLC”。
小系统用户希望在数据处理上像DCS、可靠性上像PLC、价格上像单片机嵌入系统。嵌入式PLC正好满足用户的这些愿望。嵌入式PLC是指“将支持PLC(梯形图)编程语言的内核EasyCore以小板芯的形式”嵌入到特定的控制装置中,使该装置除了具有自身的专用功能之外,还具有PLC的基本功能;开发人员能够在该PLC编程语言平台上,轻而易举地设计出通用型PLC、客户型PLC、以及各种特型控制板。嵌入式PLC是科威公司立足原有的自动化仪表技术、现场总线技术和10多年的自动化工程项目经验,在华中科技大学、武汉理工大学的协作下,经过3年多的努力攻关,首创成功的。由于嵌入式PLC的社会及经济价值十分巨大,2005年被列为国家攻关计划。迄今为止,科威公司的嵌入式PLC产品——通用型PLC、(按照客户要求定制的)客户型PLC、特型控制板,已在纺织机械、工业窑炉、塑料机械、印刷包装机械、食品机械、数控机床、恒压供水设备、环保设备等行业中成功应用,并且在窑炉自动化系统的应用中占有明显的技术优势。
长期以来,PLC始终是工业自动化的主角,并且与DCS(集散控制系统)及IPC(工控机)形成三足鼎立之势。同时,PLC也承受着来自其它技术产品的冲击,尤其是IPC所带来的冲击。微型化、网络化、IPC化、开放性是PLC未来发展的主要方向。PLC依然前途无限。
西门子S7-200 CPU的类型
从CPU模块的功能来看,SIMATIC S7-200系列小型PLC发展至今,大致经历了两代:
**代产品,其CPU模块为CPU 21X,主机都可进行扩展,它具有四种不同配置的CPU单元:CPU 212,CPU 214,CPU 215和CPU 216,本书不介绍该产品。
第二代产品,其CPU模块为CPU 22X,主机都可进行扩展,它具有五种不同配置的CPU单元:CPU 221,CPU 222,CPU 224和CPU 226和CPU226XM,除CPU 221之外,其它都可加扩展模块,是目前小型PLC的主流产品。本书将介绍CPU22X系列产品。
对于每个型号,西门子厂家都提供有产品货号,根据产品货号可以购买到指定类型的PLC。
CPU 22X主机外形图
(1) S7-200在扫描循环中完成一系列任务。任务循环执行一次称为一个扫描周期。S7-200的工作过程如图4所示。在一个扫描周期中,S7-200主要执行下列五个部分的操作:
(Ⅰ)读输入:S7-200从输入单元读取输入状态,并存入输入映像寄存器中。
(Ⅱ)执行程序:CPU根据这些输入信号控制相应逻辑,当程序执行时刷新相关数据。程序执行后,S7-200将程序逻辑结果写到输出映像寄存器中。
(Ⅲ)处理通讯请求:S7-200执行通讯处理。
(Ⅳ)执行CPU自诊断:S7-200检查固件、程序存储
器和扩展模块是否工作正常
(Ⅴ)写输出:在程序结束时,S7-200将数据从输出映像寄存器中写入把输出锁存器,**后复制到物理输出点,驱动外部负载。
(2)、S7-200 CPU的工作模式
S7-200有两种操作模式:停止模式和运行模式。CPU面板上的LED状态灯可以显示当前的操作模式。
在停止模式下,S7--200不执行程序,您可以下载程序和CPU组态。在运行模式下,S7-200将运行程序。
S7-200提供一个方式开关来改变操作模式。您可以用方式开关(位于S7-200前盖下面)手动选择操作模式:当方式开关拨在停止模式,停止程序执行;当方式开关拨在运行模式,启动程序的执行;也可以将方式开关拨在TERM(终端)(暂态)模式,允许通过编程软件来切换CPU的工作模式,即停止模式或运行模式。
如果方式开关打在STOP或者TERM模式,且电源状态发生变化,则当电源恢复时,CPU会自动进入STOP模式。如果方式开关打在RUN模式,且电源状态发生变化,则当电源恢复时,CPU会进入RUN模式。
SIMATICS7—300可编程控制器的I/O地址
请填写以下配置的SIMATICS7—300可编程控制器的I/O地址
电源 |
CPU |
接口 |
模拟输 |
模拟输 |
数字输 DI32 |
数字输 DI16 |
数字输 DQ32 |
答:模拟输入:IW256、IW258、IW260、IW262、IW264、IW266、IW268、IW270模拟输出QW272、QW274、QW276、QW278、QW280、QW282、QW284、QW286数字输入:IB8、IB9、IB10、IB11、IB12、1B13 数字输出:QB16、QB17、QB18、QB19 。
概述
本程序适用于SIMATIC S7-212和S7-214的计数器,可以从0计到255,这要取决于输入10.0的状态。如果将输入10.0置为1,则程序减计数;如果将输入10.0置为0,则程序加计数。
如果输入10.0的状态改变,则将立即激活输入/输出中断程序,中断程序0或1分别将有储器位M0.0置成1或0。
例图
程序框图
程序和注解
本程序是一个输入/输出中断程序的范例,计数器从0计到255。如果输入10.0为0,则程序加计数;如果输入10.0为1,则程序减计数。
本程序包括以下三个程序:
Main (主程序) 初始化和计数
INT0 (中断程序0) 输入10.0为1时,减计数。
INT1 (中断程序1) 输入10.0为0时,加计数。
本程序长度为32个字
//标题:事件中断
//********主程序*********
//主程序包括初始化程序和计数程序。
//计数器的存储器标志位M0.0的0或1状态,决定计数方向为加或减计数。
//当输入10.0山0变为1时,产生中断事件0,激活中断程序0 (INT0)。
//中断程序0将存储器位M0.0置成1,导致主程序减计数。
//当输入10.0山1变为0时,产生中断事件1,激活中断程序1 (INT1)。
//中断程序1将存储器位M0.0置成0,导致主程序加计数。
//主程序
LD MOVB ENI ATCH ATCH LDN AB>= A EU INCW
|
SM0.1 +0, AC0
+0, 0 +1,1 M0.0 16#FE, ACO SM0.5
AC0
|
//仅首次扫描时,SM0.1才为1,进行以下初始化 //将计数累加器ACO清Oa //允许中断。 //输入10.0为上升沿时激活事件中断0 //输入10.0为上升沿时激活事件中断1 //如果存储器的标志位M 0.0为0状态 //且计数累加器ACO的当前计数值小于或等于254 //且0.5秒脉冲 //且上升沿 //那么计算累加器ACO加1
|
LD AB<= A EU DECW
|
M0.0 16#1,AC0 SM0.5
ACO |
//如果存储器的标志位M 0.0为1状态 //且计数累加器ACO的当前计数值大于或等于 //且0.5秒脉冲 //且上升沿 //那么计算器累加器ACO减1
|
LD MOVB MEND
|
SM0.0 AC0, QB0 |
// SM0.0总是1。 //在输出端00.0至00.7显示ACO的当前计数值。 //主程序结束。
|
//******中断程序0******
//事件中断程序0将存储器的标志位M0.0置成
//此情况下程序减计数。
//
INT 0 //中断事件0减计数。
S M0.0,1 //将存储器的标志位M0.0置成
RETI //中断程序0结束。
//******中断程序1******
//事件中断程序1将存储器的标志位M 0.0置成Oa
//此情况下程序增计数。
INT 1
R M0.0,1
RETI
//中断事件1加计数。
//将存储器的标志位M0.0置成O。
//中断程序1结束。
请参考SIMATIC S丁EP 7编程参考手册的6.2节“中断指令”,为您提供了更多的有关输入输出中断的信息。