品牌:西门子
起订:1台
供应:9999台
发货:1天内
信息标签:西门子S120控制器模块6SL3121-1TE26-0AA3,供应,电子、电工,工控系统及装备
西门子S120控制器模块6SL3121-1TE26-0AA3 西门子S120控制器模块6SL3121-1TE26-0AA3
描述
引用是两个块之间的连接。
在LOGO!8中块连接器之间的连接组态和块参数之间的引用组态是标准化的。引用和组态现在就可以使用拖放来实现。本FAQ对比了LOGO!8设备和LOGO!0BA7设备之间组态引用的步骤。
组态LOGO!8需要安装LOGO!Soft Comfort 8.0或更高版本。
LOGO!8的LOGO!模块的步骤
注意
下面的工具可以用来编辑参数区(LOGO!8)
图标 | 功能 |
显示/隐藏所有块之间的引用线 | |
显示所有块的参数区 | |
隐藏所有块的参数区 |
到LOGO! 0BA7前的LOGO!模块的步骤
更多信息
关于“引用”的更详细的信息可以在LOGO!Soft Comfort(V1.7) 条目ID 24002694中还有LOGO!Soft Comfort online Help (V8.0)3.2.1.8部分, "Edit Parameter Field"章节,在条目ID 100782807中。
创建环境
本FAQ中的截图是在LOGO!Soft Comfort V8.0中创建的。
1 LOGO!App 简介
目前用户可以使用iTunes商店的应用软件LOGO!App连接和监控西门子LOGO!系列的PLC,软件名称如图1所示。在软件中成功组态LOGO! 设备的地址后,用户可以通过手机WIFI连接到LOGO!并可进行修改时钟和获取固件信息等操作。同时,用户可以监控输入/输出(以下简称I/O)状态,V存储区(以下简称VM)变量值和诊断信息,也可以添加监控的I/O和VM变量到趋势图查看一个概览图形。
图1应用程序名称
2 LOGO!App功能描述
2.1 接口配置
LOGO! App 支持IP地址和动态 DynDNS名称两种访问方式。 做法如下:
在图2中单击“Interface Configure”选项后进入图3界面单击 “By IP Address”选项,然后再单击 图标 ,进入图4设备添加界面。
图2设置功能界面 图3设备访问方式界面
在图4中单击“Add”按钮,进入图5中进行设备名称和设备IP地址设置,此处我们设置设备名称为“MyLogo”,IP地址为“192.168.1.108”,**后单击“Save”按钮保存此配置,页面会自动转入到图6界面。
图4设备添加界面 图5设备添加界面
在图6中长按 图标直到出现图7界面,在图7中我们通过“Select”选项来选择已有设备,然后进入图8界面。
图6设备选择界面 图7设备选择界面
这时在图8中可以看到IP地址已经显示在界面中,然后点击“Save”图标,界面将自动转到图9。
图8设备访问方式界面
2.2 设置时钟
在图9中单击“Set Clock”选项将进入图10界面,在图10中可点击“Read”按钮查看LOGO!时间,也可点击“Current”按钮查看当前时间,之后进入图11界面。
图9设置功能界面 图10设备访问方式界面
在图11中LOGO!系统需要停机完成读取操作,单击“YES”图标进入图12,同样我们点击“Current”按钮来获取当前时间,然后通过“Set”按钮将当前屏幕中的时间更新到LOGO!中,此时进入图13界面。
图11获取LOGO!时钟界面 图12设备访问方式界面
在图13中点击“YES”按钮来完成更新后启动LOGO!的操作。
图13更新时钟界面
2.3 查看固件版本
在图14中单击“Show FW Version”选项后系统将返回LOGO!的固件版本如图15。
图14设置功能界面 图15固件版本界面
3 LOGO!App软件监控模式
3.1 I/O 状态监视器
在图16中选择“Monitor”图标,然后选择“I/O Status Monitor”选项后进入图17界面可观察到输入点的变化,在图17中用户选择需要监控的变量。可以通过点击“Edit”按钮进入图18中进行修改。
图16设置功能界面 图17 I/O监控界面
图18设置功能界面
3.2 VM列表监视器
在图19中单击“VM Table Monitor”选项进入图20的变量监控界面,点击“Add”按钮进入图21的变量添加界面。
图19设置功能界面 图20 变量监控界面
在图21中填入变量名称、变量地址及变量数据类型后点击“Save”按钮,在变量监控界面图22中就可以监视或修改此变量的数值。
图21变量添加界面 图22 变量监控界面
此外,还可以用趋势图的方式来监控变量曲线。在图22中长按变量“speed”所在行,直至出现图23界面选择“Add To Chart”选项再返回图22界面,继续长按变量“speed”所在行,直至出现图24界面选择“Chart”选项,即进入图25的趋势图界面。
图23变量添加趋势图界面 图24 变量监控界面
图25趋势图界面
3.3 诊断监视器
在图26中单击“Diagnostic Monitor”选项后进入图27中可查看网络访问错误报警。
图26设置功能界面 图27 网络错误界面
如图28中选中“Network Access Error”标签后点击“Clear”按钮即可复位网络访问错误信息如图29所示。
图28网络选择错误界面 图29 网络错误监控界面
6RA70 (三相桥B6C)
6RA7018-6DS22-0 3AC 400V 485V 30A 325V 5A
6RA7025-6DS22-0 60A 10A
6RA7028-6DS22-0 90A 10A
6RA7031-6DS22-0 125A 10A
6RA7075-6DS22-0 210A 15A
6RA7078-6DS22-0 280A 15A
6RA7081-6DS22-0 400A 25A
6RA7085-6DS22-0 600A 25A
6RA7087-6DS22-0 850A 30A
6RA7025-6GS22-0 3AC 575V 690V 60A 325V 5A
6RA7031-6GS22-0 125A 10A
6RA7075-6GS22-0 210A 15A
6RA7081-6GS22-0 400A 25A
6RA7085-6GS22-0 600A 25A
6RA7087-6GS22-0 800A 30A
6RA7086-6KS22-0 3AC 690V 900V 720A 30A.
PLC梯形图的阅读方法简介
【梯形图】
一般在PLC的程序中,以梯形图形式表示电流方向。
【梯形图的回路符号】
为了打印出以往在PLC中使用的各种电路触点符号,
将这些内容文字符号化,统一成为A触点、B触点.
【什么叫A触点、B触点?】
例:按钮开关
按下后变为OFF
称为B型触点(BREAK触点)或常闭触点、NC触点(NORMAL CLOSE)
COM端子(共用端子)
按下后变为ON
称为A型触点(MAKE触点)或常开触点、NO触点(NORMAL OPEN)
【小结】
在PLC程序的多种方式中.作为具有代表性的梯形图方式,由于非常类似继电器顺序控制回路而被广泛使用.
【梯形图的绘制步骤】
①画出控制电源母线
②在控制电源母线内连接各触点和输入输出继电器等要素
电路图中定时器、限位开关、继电器等触点的符号各不相同,而在PLC的梯形图中却不加以区别,仅使用打印机可以打印的文字符号.
常用熔断器的种类(图)与选用原则
(1)结构与用途
熔断器的结构一般分成熔体座和熔体等部分。熔断器是串联连接在被保护电路中的,当电路电流超过一定值时,熔体因发热而熔断,使电路被切断,从而起到保护作用。熔体的热量与通过熔体电流的平方及持续通电时间成正比,当电路短路时,电流很大,熔体急剧升温,立即熔断,当电路中电流值等于熔体额定电流时,熔体不会熔断。所以熔断器可用于短路保护。由于熔体在用电设备过载时所通过的过载电流能积累热量,当用电设备连续过载一定时间后熔体积累的热量也能使其熔断,所以熔断器也可作过载保护。常用的熔断器外形如图所示
(2)类型
RC1A系列熔断器如图(a),它结构简单,由熔断器瓷底座和瓷盖两部分组成。熔丝用螺钉固定在瓷盖内的铜闸片上,使用时将瓷盖插入底座,拔下瓷盖便可更换熔丝。由于该熔断器使用方便、价格低廉而应用广泛。RC1A系列熔断器主要用于交流380V及以下的电路末端作线路和用电设备的短路保护,在照明线路中还可起过载保护作用。RC1A系列熔断器额定电流为5~200A,但极限分断能力较差,由于该熔断器为半封闭结构,熔丝熔断时有声光现象,对易燃易爆的工作场合应禁止使用。
螺旋式RL1如图(b),RL1系列螺旋式熔断器由瓷帽、瓷套、熔管和底座等组成。熔管内装有石英沙、熔丝和带小红点的熔断指示器。当从瓷帽玻璃窗口观测到带小红点的熔断指示器自动脱落时,表示熔丝熔断了。熔管的额定电压为交流500V,额定电流为2~200A。常用于机床控制线路(但安装时注意上下接线端接法)。
无填料密封管式熔断器RM10系列如图(C),由熔断管、熔体及插座组成。熔断管为钢纸制成,两端为黄铜制成的可拆式管帽,管内熔体为变截面的熔片,更换熔体较方便。RM10系列的极限分断能力比RC1A熔断器有所提高,适用于小容量配电设备。
有填料密封管式熔断器RT0系列如图(d),由熔断管、熔体及插座组成,熔断管为白瓷质的与RM10熔断器类似,但管内充填石英沙,石英沙在熔体熔断时起灭弧作用,在熔断管的一端还设有熔断指示器。该熔断器的分断能力比同容量的RM10型大2.5~4倍。RT0系列熔断器适用于交流380V及以下、短路电流大的配电装置中,作为线路及电气设备的短路保护及过载保护。
(3)熔断器的选择
对熔断器的要求是:在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电动机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。对熔断器的选用主要包括类型选择和熔体额定电流的确定。
选择熔断器的类型时,主要依据负载的保护特性和短路电流的大小。例如,用于保护照明和电动机的熔断器,一般是考虑它们的过载保护,这时,希望熔断器的熔化系数适当小些。所以容量较小的照明线路和电动机宜采用熔体为铅锌合金的RC1A系列熔断器,而大容量的照明线路和电动机,除过载保护外,还应考虑短路时分断短路电流的能力。若短路电流较小时,可采用熔体为锡质的RCIA系列或熔体为锌质的RM10系列熔断器。用于车间低压供电线路的保护熔断器,一般是考虑短路时的分断能力。当短路电流较大时,宜采用具有高分断能力的RL1系列熔断器。当短路电流相当大时,宜采用有限流作用的RT0系列熔断器。
熔断器的额定电压要大于或等于电路的额定电压
熔断器的额定电流要依据负载情况而选择。
①电阻性负载或照明电路,这类负载起动过程很短,运行电流较平稳,一般按负载额定电流的1~1.1倍选用熔体的额定电流,进而选定熔断器的额定电流。
②电动机等感性负载,这类负载的起动电流为额定电流的4~7倍,一般选择熔体的额定电流为电动机额定电流的1.5~2.5倍。这样一般来说,熔断器难以起到过载保护作用,而只能用作短路保护,过载保护应用热继电器才行。
对于多台电动机,要求
多台IFU≥(1.5~2.5)INMAX+∑IN
式中IFU——熔体额定电流(A), INMAX——**一台电动机的额定电流(A)
③为防止发生越级熔断,上、下级(供电干、支线)熔断器间应有良好的协调配合,为此,应使上一级(供电干线)熔断器的熔体额定电流比下一级(供电支线)大1~2个级差。
西门子PLC用数学函数变换指令求45o正弦值
分析:先将45o转换为弧度:(3.14159/180)*45,再求正弦值。程序如图5-20所示。
LD I0.1
MOVR 3.14159, AC1
/R 180.0, AC1
*R 45.0, AC1
SIN AC1, AC0
图1
SIMATIC S7 PLC 表取数指令应用举例
表取数指令应用举例。从图1的数据表中,用FIFO,LIFO指令取数,将取出的数值分别放入VW300,VW400中,程序及运行结果如图2所示。
图1 数据表
图2题图
用经验法和计算机辅助设计的方法进行PLC编程
1) 经验法编程
经验法是运用自己的或别人的经验进行设计。多数是设计前先选择与自己工艺要求相近的程序,把这些程序看成是自己的“试验程序”。结合自己工程的情况,对这些“试验程序”逐一修改,使之适合自己的工程要求。这里所说的经验,有的是来自自己的经验总结,有的可能是别人的设计经验,就需要日积月累,善于总结。
2) 计算机辅助设计编程
计算机辅助设计是通过 PLC 编程软件在计算机上进行程序设计、离线或在线编程、离线仿真和在线调试等等。使用编程软件可以十分方便地在计算机上离线或在线编程、在线调试,使用编程软件可以十分方便地在计算机上进行程序的存取、加密以及形成 EXE 运行文件
1)MT→PLC地址表。该表又称“输入信号地址表”。它由8位15字节地址构成(即:X00,X02,X04,X06,X08,X10,X12,X14,X16,X17-X22),字节的每位对应一个输入信号接口,并附有该信号的连接器名称和插脚编号。输入信号由MT侧传送至PMC侧,信号地址用XOO.O表示。输入信号中,除*ESP,SKIP,*DECX,*DECY,*DECZ等少数信号已由CNC厂家确定了地址外,其他地址的信号名称由设计者定义,并用缩写英文字母表示。如“急停”用“*EMG.M”,“进给保持”用“SP.M”等。所有输入信号均应据此表选定地址。
2)PLC→MT地址表。该表又称“输出信号地址表”。它由8位10字节地址构成(即:Y48~53,YS0,Y82,Y84,Y86),字节的每位对应一个输出信号接口,并附有该信号的连接器名称和插脚编号。输出信号由PMC侧传送至MT侧,信号地址用YOO.O表示。所有输出信号名称由设计者定义,并用缩写英文字母表示。
输入和输出信号地址一经确定,信号所用连接器,插脚编号亦随之确定。安装时,各信号线即按指定连接器和插脚连接。
3)PLC→NC地址表。该表为PMC侧向NC侧传送信号的接口地址表。由8位27字节地址构成(即:G100~G111,G116~G122,G124~G131)。信号地址用GOOO.O表示。这些信号已由CNC厂家定义,名称和含义均已固定,用户不能增删和改变。
4)NC→PLC地址表。该表为NC侧向PMC侧传送信号的接口地址表。由8位27字节地址构成(即:P14~8F156,F160~F163,F171~P178)。信号地址用FOOO.O表示。这些信号也已由CNC厂家定义,用户不能增删和改变。
各信号传送方向如图2所示。
图2 信号传送方向
西门子PLC填表指令应用举例
填表指令应用举例。将VW100中的数据1111,填入首地址是VW200的数据表中(图1)。程序及运行结果如图2所示。
图1
LD I0.0
ATT VW100, VW200
图2
S7-200PLC交换和填充指令
交换和填充指令
名称 |
指令格式 (语句表) |
功能 |
操作数 |
换字节指令 |
SWAP IN |
将输入字IN的高位字节与低位字节的内容交换,结果放回IN中 |
IN:VW,IW,QW,MW,SW,SMW,LW,T,C,AC,*VD,*AC,*LD |
填充指令 |
FILL IN,OUT,N |
用输入字IN填充从OUT开始的N个字存储单元 N的范围为1~255 |
IN,OUT:VW,IW,QW,MW,SW,SMW,LW,T,C,AC,*VD,*AC,*LD IN还可以是AIW和常数 OUT还可以是AQW N:VB,IB,QB,MB,SB,SMB,LB,AC,*VD,*AC,*LD,常数 |
表操作指令
名称 |
指令格式 (语句表) |
功能 |
操作数 |
表存数指令 |
ATT DATA,TABLE |
将一个字型数据DATA添加到表TABLE的末尾。EC值加1 |
DATA,TABLE:VW,IW,QW,MW,SW,SMW,LW,T,C,AC,*VD,*AC,*LD DATA还可以是AIW,AC和常数 |
表取数指令 |
FIFO TABLE,DATA |
将表TABLE的**个字型数据删除,并将它送到DATA指定的单元。表中其余的数据项都向前移动一个位置,同时实际填表数EC值减1 |
DATA,TABLE:VW,IW,QW,MW,SW,SMW,LW,T,C, *VD,*AC,*LD DATA还可以是AQW和AC |
LIFO TABLE,DATA |
将表TABLE的**后一个字型数据删除,并将它送到DATA指定的单元。剩余数据位置保持不变,同时实际填表数EC值减1 |
||
表查找指令 |
FND= TBL,PTN,INDEX FND<> TBL,PTN,INDEX FND< TBL,PTN,INDEX FND> TBL,PTN,INDEX |
搜索表TBL,从INDEX指定的数据项开始,用给定值PTN检索出符合条件(=,<>,<,>)的数据项 如果找到一个符合条件的数据项,则INDEX指明该数据项在表中的位置。如果一个也找不到,则INDEX的值等于数据表的长度。为了搜索下一个符合的值,在再次使用该指令之前,必须先将INDEX加1 |
TBL:VW,IW,QW,MW,SMW,LW,T,C, *VD,*AC,*LD PTN,INDEX:VW,IW,QW,MW,SW,SMW,LW,T,C,AC, *VD,*AC,*LD PTN还可以是AIW和AC |