西门子CPU314C-2PtP
|
|
-
带集成数字量和模拟量I/O和一个RS 422/485串口的紧凑型CPU
-
满足对处理能力和响应时间要
|
6ES7312-1AE14-0AB0
SIMATIC S7-300, CPU 312 CPU WITH MPI INTERFACE, INTEGRATED 24 V DC POWER SUPPLY 32 KBYTE WORKING MEMORY, MICRO MEMORY CARD NECESSARY
|
|
6ES7314-1AG14-0AB0
SIMATIC S7-300, CPU 314 CPU WITH MPI INTERFACE, INTEGRATED 24V DC POWER SUPPLY, 128 KBYTE WORKING MEMORY, MICRO MEMORY CARD NECESSARY
|
|
6ES7315-2AH14-0AB0
SIMATIC S7-300, CPU 315-2DP CPU WITH MPI INTERFACE INTEGRATED 24 V DC POWER SUPPLY 256 KBYTE WORKING MEMORY 2. INTERFACE DP-MASTER/SLAVE MICRO MEMORY CARD NECESSARY
|
|
6ES7315-2EH14-0AB0
SIMATIC S7-300 CPU 315-2 PN/DP,中央处理单元,带有 384 KBYTE 工作存储器,1 个 MPI/DP 12MBIT/S 接口,2 个以太网 PROFINET 接口,双端换机,需要微型存储卡
|
|
6ES7317-2AK14-0AB0
SIMATIC S7-300, CPU317-2 DP, CENTRAL PROCESSING UNIT WITH 1 MBYTE WORKING MEMORY, 1. INTERFACE MPI/DP 12MBIT/S, 2. INTERFACE DP-MASTER/SLAVE, MICRO MEMORY CARD NECESSARY
|
|
6ES7317-2EK14-0AB0
SIMATIC S7-300 CPU 317-2 PN/DP,中央处理单元,带有 1 MB 工作存储器,1 个 MPI/DP 12MBIT/S 接口,2 个以太网 PROFINET 接口,,需要微型存储卡
|
|
6ES7318-3EL01-0AB0
SIMATIC S7-300 CPU 319-3 PN/DP, CENTRAL PROCESSING UNIT WITH 2 MBYTE WORKING MEMORY, 1. INTERFACE MPI/DP 12MBIT/S, 2. INTERFACE DP-MASTER/SLAVE, 3. INTERFACE ETHERNET PROFINET, WITH 2 PORT SWITCH, MICRO MEMORY CARD NECESSARY
|
|
6ES7312-5BF04-0AB0
SIMATIC S7-300, CPU 312C COMPACT CPU WITH MPI, 10 DI/6 DO, 2 FAST COUNTERS (10 KHZ), INTEGRATED 24V DC POWER SUPPLY, 64 KBYTE WORKING MEMORY, FRONT ConNECTOR (1 X 40PIN) AND MICRO MEMORY CARD REQUIRED
|
|
6ES7313-5BG04-0AB0
SIMATIC S7-300, CPU 313C, COMPACT CPU WITH MPI, 24 DI/16 DO, 4AI, 2AO 1 PT100, 3 FAST COUNTERS (30 KHZ), INTEGRATED 24V DC POWER SUPPLY, 128 KBYTE WORKING MEMORY, FRONT ConNECTOR (2 X 40PIN) AND MICRO MEMORY CARD REQUIRED
|
|
6ES7313-6BG04-0AB0
SIMATIC S7-300, CPU 313C-2 PTP COMPACT CPU WITH MPI, 16 DI/16 DO, 3 FAST COUNTERS (30 KHZ), INTEGRATED INTERFACE RS485, INTEGRATED 24V DC POWER SUPPLY, 128 KBYTE WORKING MEMORY, FRONT ConNECTOR (1 X 40PIN) AND MICRO MEMORY CARD REQUIRED
|
|
6ES7313-6CG04-0AB0
SIMATIC S7-300, CPU 313C-2DP COMPACT CPU WITH MPI, 16 DI/16 DO, 3 FAST COUNTERS (30 KHZ), INTEGRATED DP INTERFACE, INTEGRATED 24V DC POWER SUPPLY, 128 KBYTE WORKING MEMORY, FRONT ConNECTOR (1 X 40PIN) AND MICRO MEMORY CARD REQUIRED
|
|
6ES7314-6BH04-0AB0
SIMATIC S7-300, CPU 314C-2 PTP COMPACT CPU WITH MPI, 24 DI/16 DO, 4AI, 2AO, 1 PT100, 4 FAST COUNTERS (60 KHZ), INTEGRATED INTERFACE RS485, INTEGRATED 24V DC POWER SUPPLY, 192 KBYTE WORKING MEMORY, FRONT ConNECTOR (2 X 40PIN) AND MICRO MEMORY CARD REQUIRED
|
|
6ES7314-6CH04-0AB0
SIMATIC S7-300, CPU 314C-2 DP COMPACT CPU WITH MPI, 24 DI/16 DO, 4AI, 2AO, 1 PT100, 4 FAST COUNTERS (60 KHZ), INTEGRATED DP INTERFACE, INTEGRATED 24V DC POWER SUPPLY, 192 KBYTE WORKING MEMORY, FRONT ConNECTOR (2 X 40PIN) AND MICRO MEMORY CARD REQUIRED
|
|
6ES7314-6EH04-0AB0
SIMATIC S7-300, CPU 314C-2PN/DP COMPACT CPU WITH 192 KBYTE WORKING MEMORY, 24 DI/16 DO, 4AI, 2AO, 1 PT100, 4 FAST COUNTERS (60 KHZ), 1. INTERFACE MPI/DP 12MBIT/S, 2. INTERFACE ETHERNET PROFINET, WITH 2 PORT SWITCH, INTEGRATED 24V DC POWER SUPPLY, FRONT ConNECTOR (2 X 40PIN) AND MICRO MEMORY CARD REQUIRED
|
SIMATIC S7-300 提供多种性能等级的 CPU。除了标准型 CPU 外,还提供紧凑型 CPU。
同时还提供技术功能型 CPU 和故障安全型 CPU。
下列标准型CPU 可以提供:
-
CPU 312,用于小型工厂
-
CPU 314,用于对程序量和指令处理速率有额外要求的工厂
-
CPU 315-2 DP,用于具有中/大规模的程序量以及使用PROFIBUS DP进行分布式组态的工厂
-
CPU 315-2 PN/DP,用于具有中/大规模的程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
-
CPU 317-2 DP,用于具有大容量程序量以及使用PROFIBUS DP进行分布式组态的工厂
-
CPU 317-2 PN/DP,用于具有大容量程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
-
CPU 319-3 PN/DP,用于具有极大容量程序量何组网能力以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
下列紧凑型CPU 可以提供:
-
CPU 312C,具有集成数字量 I/O 以及集成计数器功能的紧凑型 CPU
-
CPU 313C,具有集成数字量和模拟量 I/O 的紧凑型 CPU
-
CPU 313C-2 PtP,具有集成数字量 I/O 、2个串口和集成计数器功能的紧凑型 CPU
-
CPU 313C-2 DP,具有集成数字量 I/O 、PROFIBUS DP 接口和集成计数器功能的紧凑型 CPU
-
CPU 314C-2 PtP,具有集成数字量和模拟量 I/O 、2个串口和集成计数、定位功能的紧凑型 CPU
-
CPU 314C-2 DP,具有集成数字量和模拟量 I/O、PROFIBUS DP 接口和集成计数、定位功能的紧凑型 CPU
下列技术型CPU 可以提供:
-
CPU 315T-2 DP,用于使用 PROFIBUS DP进行分布式组态、对程序量有中/高要求、同时需要对8个轴进行常规运动控制的工厂。
-
CPU 317T-2 DP,用于使用 PROFIBUS DP进行分布式组态、对程序量有高要求、又必须同时能够处理运动控制任务的工厂
下列故障安全型CPU 可以提供:
-
CPU 315F-2 DP,用于采用 PROFIBUS DP 进行分布式组态、对程序量有中/高要求的故障安全型工厂
-
CPU 315F-2 PN/DP,用于具有中/大规模的程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
-
CPU 317F-2 DP,用于具有大容量程序量以及使用PROFIBUS DP进行分布式组态的故障安全工厂
-
CPU 317F-2 PN/DP,用于具有大容量程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
-
CPU 319F-3 PN/DP,用于具有大容量程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的故障安全型工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
S7-300
-
模块化微型 PLC 系统,满足中、小规模的性能要求
-
各种性能的模块可以非常好地满足和适应自动化控制任务
-
简单实用的分布式结构和多界面网络能力,应用十分灵活
-
操作方便,设计简单,不含风扇
-
任务增加时可顺利扩展
-
大量的集成功能,使它功能非常强劲
S7-300F
-
故障安全型自动化系统,可满足工厂日益增加的安全需求
-
基于 S7-300
-
可连接配有安全型模块的附加 ET 200S 和 ET 200M 分布式 I/O 站
-
通过采用 PROFIsafe 行规的 PROFIBUS DP 进行安全相关通信
-
标准模块另外也可用于非安全相关应用
S7-300
SIMATIC S7-300 是模块化的微型 PLC 系统,可满足中、低端的性能要求。
模块化、无风扇设计、易于实现分布式结构以及方便的操作,使得 SIMATIC S7-300 成为中、低端应用中各种不同任务的经济、用户友好的解决方案。
SIMATIC S7-300 的应用领域包括:
-
特殊机械,
-
纺织机械,
-
包装机械,
-
一般机械设备制造,
-
控制器制造,
-
机床制造,
-
安装系统,
-
电气与电子工业及相关产业。
多种性能等级的 CPU,具有用户友好功能的全系列模块,可允许用户根据不同的应用选取相应模块。任务扩展时,可通过使用附加模块随时对控制器进行升级。
SIMATIC S7-300 是一个通用的控制器:
-
具有高电磁兼容性和抗震性,可**限度地用于工业领域。
S7-300F
SIMATIC S7-300F 故障安全自动化系统可使用在对安全要求较高的设备中。其可对立即停车过程进行控制,因此不会对人身、环境造成损害。
S7-300F 满足下列安全要求:
-
要求等级 AK 1 - AK 6 符合 DIN V 19250/DIN V VDE 0801
-
安全要求等级 SIL 1 - SIL 3 符合 IEC 61508
-
类别 1 - 4 符合 EN 954-1
另外,标准模块还可用在 S7-300F 及故障安全模块中。因此它可以创建一个全集成的控制系统,在非安全相关和安全相关任务共存的工厂中使用。使用相同的标准工具对整个工厂进行组态和编程。
S7-300
一般步骤
S7-300自动化系统采用模块化设计。它拥有丰富的模块,且这些模块均可以独立地组合使用。
一个系统包含下列组件:
-
CPU:
不同的 CPU 可用于不同的性能范围,包括具有集成 I/O 和对应功能的 CPU 以及具有集成 PROFIBUS DP、PROFINET 和点对点接口的 CPU。
-
用于数字量和模拟量输入/输出的信号模块 (SM)。
-
用于连接总线和点对点连接的通信处理器 (CP)。
-
用于高速计数、定位(开环/闭环)及 PID 控制的功能模块(FM)。
根据要求,也可使用下列模块:
-
用于将 SIMATIC S7-300 连接到 120/230 V AC 电源的负载电源模块(PS)。
-
接口模块 (IM),用于多层配置时连接中央控制器 (CC) 和扩展装置 (EU)。
通过分布式中央控制器 (CC) 和 3 个扩展装置 (EU),SIMATIC S7-300 可以操作多达 32 个模块。所有模块均在外壳中运行,并且无需风扇。
-
SIPLUS 模块可用于扩展的环境条件:
适用于 -25 至 +60℃ 的温度范围及高湿度、结露以及有雾的环境条件。防直接日晒、雨淋或水溅,在防护等级为 IP20 机柜内使用时,可直接在汽车或室外建筑使用。不需要空气调节的机柜和 IP65 外壳。
设计
简单的结构使得 S7-300 使用灵活且易于维护:
-
安装模块:
只需简单地将模块挂在安装导轨上,转动到位然后锁紧螺钉。
-
集成的背板总线:
背板总线集成到模块里。模块通过总线连接器相连,总线连接器插在外壳的背面。
-
模块采用机械编码,更换极为容易:
更换模块时,必须拧下模块的固定螺钉。按下闭锁机构,可轻松拔下前连接器。前连接器上的编码装置防止将已接线的连接器错插到其他的模块上。
-
现场证明可靠的连接:
对于信号模块,可以使用螺钉型、弹簧型或绝缘刺破型前连接器。
-
TOP 连接:
为采用螺钉型接线端子或弹簧型接线端子连接的 1 线 - 3 线连接系统提供预组装接线另外还可直接在信号模块上接线。
-
规定的安装深度:
所有的连接和连接器都在模块上的凹槽内,并有前盖保护。因此,所有模块应有明确的安装深度。
-
无插槽规则:
信号模块和通信处理器可以不受限制地以任何方式连接。系统可自行组态。
扩展
若用户的自动化任务需要 8 个以上的 SM、FM 或 CP 模块插槽时,则可对 S7-300(除 CPU 312 和 CPU 312C 外)进行扩展:
-
中央控制器和3个扩展机架**多可连接32个模块:
总共可将 3 个扩展装置(EU)连接到中央控制器(CC)。每个 CC/EU 可以连接八个模块。
-
通过接口模板连接:
每个 CC / EU 都有自己的接口模块。在中央控制器上它总是被插在 CPU 旁边的插槽中,并自动处理与扩展装置的通信。
-
通过 IM 365 扩展:
1 个扩展装置**远扩展距离为 1 米;电源电压也通过扩展装置提供。
-
通过 IM 360/361 扩展:
3 个扩展装置, CC 与 EU 之间以及 EU 与 EU 之间的**远距离为 10m。
-
单独安装:
对于单独的 CC/EU,也能够以更远的距离安装。两个相邻 CC/EU 或 EU/EU 之间的距离:长达 10m。
-
灵活的安装选项:
CC/EU 既可以水平安装,也可以垂直安装。这样可以**限度满足空间要求。
通信
S7-300 具有不同的通信接口:
-
连接 AS-Interface、PROFIBUS 和 PROFINET/工业以太网总线系统的通信处理器。
-
用于点到点连接的通信处理器
-
多点接口 (MPI), 集成在 CPU 中;
是一种经济有效的方案,可以同时连接编程器/PC、人机界面系统和其它的 SIMATIC S7/C7 自动化系统。
PROFIBUS DP进行过程通信
SIMATIC S7-300 通过通信处理器或通过配备集成 PROFIBUS DP 接口的 CPU 连接到 PROFIBUS DP 总线系统。通过带有 PROFIBUS DP 主站/从站接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。
从用户的角度来看,PROFIBUS DP 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
以下设备可作为主站连接:
-
SIMATIC S7-300
(通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)
-
SIMATIC S7-400
(通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)
-
SIMATIC C7
(通过带 PROFIBUS DP 接口的 C7 或 PROFIBUS DP CP)
-
SIMATIC S5-115U/H、S5-135U 和 S5-155U/H,带IM 308
-
SIMATIC 505
出于性能原因,每条线路上连接的主站不得超过 2 个。
以下设备可作为从站连接:
-
ET 200 分布式 I/O 设备
-
S7-300,通过 CP 342-5
-
CPU 313C-2 DP, CPU 314C-2 DP, CPU 314C-2 PN/DP, CPU 315-2 DP, CPU 315-2 PN/DP, CPU 317-2 DP, CPU 317-2 PN/DP and CPU 319-3 PN/DP
-
C7-633/P DP, C7-633 DP, C7-634/P DP, C7-634 DP, C7-626 DP, C7-635, C7-636
-
现场设备
虽然带有 STEP 7 的编程器/PC 或 OP 是总线上的主站,但是只使用 MPI 功能,另外通过 PROFIBUS DP 也可部分提供 OP 功能。
通过 PROFINET IO 进行过程通信
SIMATIC S7-300 通过通信处理器或通过配备集成 PROFINET 接口的 CPU 连接到 PROFINET IO 总线系统。通过带有 PROFIBUS 接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。
从用户的角度来看,PROFINET IO 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
可将下列设备作为 IO 控制器进行连接:
-
SIMATIC S7-300
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)
-
SIMATIC ET 200
(使用配备 PROFINET 接口的 CPU)
-
SIMATIC S7-400
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)
可将下列设备作为 IO 设备进行连接:
-
ET 200 分布式 I/O 设备
-
ET 200S IM151-8 PN/DP CPU, ET 200pro IM154-8 PN/DP CPU
-
SIMATIC S7-300
(使用配备 PROFINET 接口或 PROFINET CP 的 CPU)
-
现场设备
通过 AS-Interface 进行过程通信
S7-300 所配备的通信处理器 (CP 342-2) 适用于通过 AS-Interface 总线连接现场设备(AS-Interface 从站)。
更多信息,请参见通信处理器。
通过 CP 或集成接口(点对点)进行数据通信
通过 CP 340/CP 341 通信处理器或 CPU 313C-2 PtP 或 CPU 314C-2 PtP 的集成接口,可经济有效地建立点到点连接。有三种物理传输介质支持不同的通信协议:
-
20 mA (TTY)(仅 CP 340/CP 341)
-
RS 232C/V.24(仅 CP 340/CP 341)
-
RS 422/RS 485
可以连接以下设备:
-
SIMATIC S7、SIMATIC S5 自动化系统和其他公司的系统
-
打印机
-
机器人控制
-
扫描器,条码阅读器,等
特殊功能块包括在通信功能手册的供货范围之内。
使用多点接口 (MPI) 进行数据通信
MPI(多点接口)是集成在 SIMATIC S7-300 CPU 上的通信接口。它可用于简单的网络任务。
-
MPI 可以同时连接多个配有 STEP 7 的编程器/PC、HMI 系统(OP/OS)、S7-300 和 S7-400。
-
全局数据:
“全局数据通信”服务可以在联网的 CPU 间周期性地进行数据交换。 一个 S7-300 CPU 可与多达 4 个数据包交换数据,每个数据包含有 22 字节数据,可同时有 16 个 CPU 参与数据交换(使用 STEP 7 V4.x)。
例如,可以允许一个 CPU 访问另一个 CPU 的输入/输出。只可通过 MPI 接口进行全局数据通信。
-
内部通信总线(C-bus):
CPU 的 MPI 直接连接到 S7-300 的 C 总线。因此,可以通过 MPI 从编程器直接找到与 C 总线连接的 FM/CP 模块的地址。
-
功能强大的通信技术:
-
多达 32 个 MPI 节点。
-
使用 SIMATIC S7-300/-400 的 S7 基本通信的每个 CPU 有多个通信接口。
-
使用编程器/PC、SIMATIC HMI 系统和 SIMATIC S7-300/400 的 S7 通信的每个 CPU 有多个通信接口。
-
数据传输速率 187.5 kbit/s 或 12 Mbit/s
-
灵活的组态选项:
可靠的组件用于建立 MPI 通信: PROFIBUS 和“分布式 I/O”系列的总线电缆、总线连接器和 RS 485 中继器。使用这些组件,可以根据需求实现设计的**化调整。例如,任意两个MPI节点之间**多可以开启10个中继器,以桥接更大的距离。
通过 CP 进行数据通信
SIMATIC S7-300 通过 CP 342 和 CP 343 通信处理器可以连接到 PROFIBUS 和工业以太网总线系统。
可以连接以下设备:
-
SIMATIC S7-300
-
SIMATIC S7-400
-
SIMATIC S5-115U/H、S5-135U 和 S5-155U/H
-
编程器
-
PC 机
-
SIMATIC HMI 人机界面系统
-
数控装置
-
机器人控制
-
工业PC
-
驱动控制器
-
其它厂商设备
S7-300F
S7-300F 能够以两种 I/O 设计的方式运行:
-
ET 200M 中的 I/O 设计:
故障安全数字量/模拟量输入和输出模块用于集中式或分布式应用(Cat.4/SIL3 只能与隔离模块一起使用)
-
ET 200S PROFIsafe 中的 I/O 设计:
故障安全数字量输入和输出模块可用于分布式应用
6SL3000-0BE21-6DA0
-
西门子PLC S7-200 CPU 22X 主机的技术指标
项目名称
|
CPU221
|
CPU222
|
CPU224
|
CPU226
|
CPU226XM
|
用户程序区
|
4KB
|
4KB
|
8KB
|
8KB
|
16KB
|
数据存储区
|
2KB
|
2KB
|
5KB
|
5KB
|
l OKB
|
主机数字量输入/输出点数
|
6/4
|
8/6
|
14/10
|
24/16
|
24/16
|
模拟量输入/输出点数
|
无
|
16/16
|
32/32
|
32/32
|
32/32
|
扫描时间/1条指令
|
0.37μs
|
0.37μs
|
0.37μs
|
0.37μs
|
0.37μs
|
**输入/输出点数
|
256
|
256
|
256
|
256
|
256
|
位存储区
|
256
|
256
|
256
|
256
|
256
|
定时器
|
256
|
256
|
256
|
256
|
256
|
计数器
|
256
|
256
|
256
|
256
|
256
|
允许**的扩展模块
|
无
|
2模块
|
7模块
|
7模块
|
7模块
|
允许**的智能模块
|
无
|
2模块
|
7模块
|
7模块
|
7模块
|
时钟功能
|
可选
|
可选
|
内置
|
内置
|
内置
|
数字量输入滤波
|
标准
|
标准
|
标准
|
标准
|
标准
|
模拟量输入滤波
|
无
|
标准
|
标准
|
标准
|
标准
|
高速计数器
|
4个30KHz
|
4个30KHz
|
6个30KHz
|
6个30KHz
|
6个30KHz
|
脉冲输出
|
2个20KHz
|
2个20KHz
|
2个20KHz
|
2个20KHZ
|
2个20KHz
|
通信口
|
1xRS485
|
1xRS485
|
1 xRS485
|
2xRS485
|
2xRS485
|
项目名称
|
CPU221
|
CPU222
|
CPU224
|
CPU226
|
CPU226XM
|
用户程序区
|
4KB
|
4KB
|
8KB
|
8KB
|
16KB
|
数据存储区
|
2KB
|
2KB
|
5KB
|
5KB
|
l OKB
|
主机数字量输入/输出点数
|
6/4
|
8/6
|
14/10
|
24/16
|
24/16
|
模拟量输入/输出点数
|
无
|
16/16
|
32/32
|
32/32
|
32/32
|
扫描时间/1条指令
|
0.37μs
|
0.37μs
|
0.37μs
|
0.37μs
|
0.37μs
|
**输入/输出点数
|
256
|
256
|
256
|
256
|
256
|
位存储区
|
256
|
256
|
256
|
256
|
256
|
定时器
|
256
|
256
|
256
|
256
|
256
|
计数器
|
256
|
256
|
256
|
256
|
256
|
允许**的扩展模块
|
无
|
2模块
|
7模块
|
7模块
|
7模块
|
允许**的智能模块
|
无
|
2模块
|
7模块
|
7模块
|
7模块
|
时钟功能
|
可选
|
可选
|
内置
|
内置
|
内置
|
数字量输入滤波
|
标准
|
标准
|
标准
|
标准
|
标准
|
模拟量输入滤波
|
无
|
标准
|
标准
|
标准
|
标准
|
高速计数器
|
4个30KHz
|
4个30KHz
|
6个30KHz
|
6个30KHz
|
6个30KHz
|
脉冲输出
|
2个20KHz
|
2个20KHz
|
2个20KHz
|
2个20KHZ
|
2个20KHz
|
通信口
|
1xRS485
|
1xRS485
|
1 xRS485
|
2xRS485
|
2xRS485
|
由表1可知,CPU 22X 系列具有不同的技术性能,使用于不同要求的控制系统:
CPU 221:用户程序和数据存储容量较小,有一定的高速计数处理能力,适合用于点数少的控制系统。
CPU222:和CPU221相比,它可以进行一定模拟量的控制,可以连接2个扩展模块,应用更为广泛。
CPU224:和前两者相比,存储容量扩大了一倍,有内置时钟,它有更强的模拟量和高速计数的处理能力,使用很普遍。
CPU 226:和CPU224相比,增加了通信口的数量,通信能力大大增强,可用于点数较多、要求较高的小型或中型控制系统。
CPU226XM:它是西门子公司推出的一款增强型主机,主要在用户程序和数据存储容量上进行了扩展,其他指标和CPU 226相同。
-
PLC硬件设计和软件设计的主要内容和要求
PLC硬件设计包括:PLC及外围线路的设计、电气线路的设计和抗干扰措施的设计等。
选定PLC的机型和分配I/O点后,硬件设计的主要内容就是电气控制系统的原理图的设计,电气控制元器件的选择和控制柜的设计。电气控制系统的原理图包括主电路和控制电路。控制电路中包括PLC的I/O接线和自动、手动部分的详细连接等。电器元件的选择主要是根据控制要求选择按钮、开关、传感器、保护电器、接触器、指示灯、电磁阀等。
2. PLC的软件设计
软件设计包括系统初始化程序、主程序、子程序、中断程序、故障应急措施和辅助程序的设计,小型开关量控制一般只有主程序。首先应根据总体要求和控制系统的具体情况,确定程序的基本结构,画出控制流程图或功能流程图,简单的可以用经验法设计,复杂的系统一般用顺序控制设计法设计。
编好的程序需要经过运行调试,以确认是否满足机床控制的要求。一般来说,顺序程序的调试要经过“仿真调试”和“联机调试”两个步骤。
(1)仿真调试
“仿真调试”又称“模拟调试”,是指在实验室条件下,采用特制的“仿真设备”(或称“模拟装置”、“模拟台”等)代替机床与CNC、PLC、PLC编程设备联接起来(在有条件的情况下,还可以联接伺服单元、伺服电动机、甚至某些独立的机械功能部件),对顺序程序进行的调试。“仿真调试”具有安全、能耗小、调试轴助人员少等优点。
“仿真设备”常用许多开关、指示灯来模拟机床各电气功能器件的状态。如用小型开关的通/断代替MT侧操作面板的开关、按钮,电气柜内的继电器触点,安装于机床各运动部件上的位置检测开关等的闭合/断开,以模拟各种输入信号的“1”和“0”状态,用指示灯的亮/灭代替MT侧操作面板指示灯,电气柜内继电器线圈等的通电/断电,以验证输出到MT侧各器件的信号状态。
“仿真调试”是“联机调试”前的一个重要步骤。程序设计员可以通过“仿真设备”对诸如机床操作面板、工作台运行、工件装夹、主轴起停、刀库手动、自动找刀、机械手换刀、工作台分度及各机械动作和控制逻辑的互锁关系进行分考动作和循环动作运行调试,以保证顺序程序控制原理的正确性,为以后的整机联调的安全,顺利地进行打下基础。
需要指出的是,“仿真设备”虽可以通过模拟机床侧的信号状态调试并确认机床控制中的许多控制顺序问题,但因条件的限制,往往不能完全真实地模拟那些与时间控制有关的机械动作,以及某些复杂的循环动作顺序。因此,顺序程序还须进行联机运行调试,才能**终确认是否正确。
(2)联机调试
将机床、CNC装置、PLC装置和编程设备联接起来进行的整机机电运行调试称为“联机调试”(如图1所示)。“联机调试”可以发现和纠正顺序程序的错误,可以检查机床和电气线路的设计,制造,安装以及机电元器件品质可能存在的问题。
“联机调试”工作在车间现场由具有机电专业知识的多名工程技术人员联合进行。在确认CNC系统、伺服系统、PLC装置、强电柜元器件、机床各元部件的安装和连接无误后,才可以接通电源,将存储在编程设备中的顺序程序传送至RAM插板(或PLC装置的RAM存储器)中,然后执行顺序程序,以便对各机电执行元部件的动作及其顺序控制逻辑进行检查。需要时,可用编程设备修改顺序程序,然后再传送到RAM插板中。
图1 联机调试系统方法示意图
-
PLC顺序控制系统的几种简易设计方法
引言
在生产机械的自动控制领域,PLC顺序控制系统的应用量大面广。然而,工艺不同的生产机械要求设计不同的控制系统梯形图。目前,不少电气设计人员仍然采用经验设计法来设计PLC顺序控制系统,不仅设计效率低,容易出差错,而且设计阶段难以发现错误,需要多次调试、修改才符合设计要。本文提出的4种简易设计方法,能**地一次设计成功PLC顺序控制系统。
顺序控制系统的特点及设计思路
1.特点顺序控制系统是指按照预定的受控执行机构动作顺序及相应的转步条件,一步一步进行的自动控制系统。其受控设备通常是动作顺序不变或相对固定的生产机械。这种控制系统的转步主令信号大多数是行程开关(包括有触点或无触点行程开关、光电开关、干簧管开关、霍尔元件开关等位置检测开关),有时也采用压力继电器、时间继电器之类的信号转换元件作为某些步的转步主令信号。
为了使顺序控制系统工作可靠,通常采用步进式顺序控制电路结构。所谓步进式顺序控制,是指控制系统的任一程序步(以下简称步)的得电必须以前一步的得电并且本步的转步主令信号已发出为条件。对生产机械而言,受控设备任一步的机械动作是否执行,取决于控制系统前一步是否已有输出信号及其受控机械动作是否已完成。若前一步的动作未完成,则后一步的动作无法执行。这种控制系统的互锁严密,即便转步主令信号元件失灵或出现误操作,亦不会导致动作顺序错乱。
2.设计思路本文提出的4种简易设计方法都是先设计步进阶梯,在步进阶梯实现由转步主令信号控制辅助继电器得失电;然后根据步进阶梯设计输出阶梯,在输出阶梯实现由辅助继电器控制输出继电器得失电。这4种设计法所设计的梯形图电路结构及相应的指令应适用于大多数PLC机型,具有通用性。
由于各种PLC机型的编程元件代号及其编号不尽相同,为便于阐述,本文约定:所有梯形图中的输入继电器、输出继电器、辅助继电器(又称内部继电器)的代号分别为:X、Y、M。设计中所用到的某些功能指令,如置位指令约定为S×,复位指令为R×;移位指指令为SR×。其中的“×”表示编程元件的编号,用十进制数表示。用这些方法设计实际的控制系统时,应将编程元件代号和编号变换成所选用的PLC机型对应的代号和编号。
图1 顺序控制流程
下面分别介绍各种设计方法。其中,前3种方法的设计依据都是图1所示的顺序控制流程。图中,步1的转步主令信号X0为连接启动按钮的输入继电器(为简明起见,后述的转步主令信号均省去“输入继电器”几个字,只提输入信号),X1为原位开关信号,X2、X3、X4分别为步2、3、4的转步主令开关信号。M1~M5分别为各步的受控辅助继电器。Y1~Y4分别为各步受控的输出继电器。
一、逐步得电同步失电型步进顺序控制系统设计法
如图2所示,这种设计方法是根据“与”、“或”、“非”的基本逻辑关系,设计成串联、并联或串、并联复合的电路结构。
图2 逐步得电同步失电步进顺控梯形图
1.步进阶梯的设计步进阶梯的结构
如图2a所示。步1的M1得电条件是受控机械原位开关X1处于压合状态(若受控机械有多个执行机构,则要求每个执行机构的原位开关均处于压合状态),满足原位条件后按起动按钮X0才能得电。M1得电后自锁,并为步2提供步进条件信号(M1的常开触点)。步1的执行动作完成时触发的行程开关信号X2作为步2的转步条件信号。步2的M2的输入满足其步进条件和转步条件后得电自锁,并为步3提供步进条件信号。按此规律即可实现后续每一工作步辅助继电器的得电和自锁。停止步M5的步进条件信号和转步条件信号分别为:**后一个工作步M4发出的步进条件信号(M4的常开触点)和该步动作完成时所触发的转步信号X1。由于M5的得电信号令控制系统失电,所以M5的回路不自锁,而且要将其常闭触点串联在步1回路的**左端。从步2起后续各个步的回路构成分支回路。一旦M5得电便使整个系统失电。如不用分支回路的结构,也可采用图3所示的回路。即把M5常闭触点分别串联在每步辅助继电器的回路上。应该注意的是:无论工作步还是停止步,如果某步的转步主令信号有多个,则应将多个转步主令信号互相串联。
图3 逐步得电同步失电梯形图
2.输出阶梯的设计输出阶梯
如图2b所示。其设计方法是:(1)在控制流程图中,找出某输出继电器M在哪一步开始得电和在哪一步开始失电,以此确定其得电信号(步进阶梯中使M开始得电的辅助继电器常开触点)和失电信号(步进阶梯中使M开始失电的辅助继电器常闭触点);(2)将得电信号、失电信号和受控输出继电器线圈串联。如果某个输出继电器在一个工作循环中多次得电失电,则将每次得失电的串联信号互相并联即可。例如,图1中输出继电器Y1要求在步1和步3得电,在其余步失电。在图2b画其控制回路时,将图1所示的**次得电信号M1和**次失电信号M2串联,第二次得电信号M4和第二次失电信号串联,然后将二者并联起来,再与Y1的线圈串联便构成Y1的控制回路。其余依此类推。
二、逐步得电逐步失电型步进顺序控制系统设计法
1.步进阶梯设计
按图1所示的控制流程,采用逐步得电逐步失电型顺序控制系统设计法设计的步进阶梯如图4a所示,其电路结构与图3的不同点之一是每步的失电由下一步辅助继电器的常闭接点控制;之二是步1回路必须串联步2至**后工作步4的辅助继电器常闭触点。以防电路工作时,因误操作再次起动而导致控制顺序错乱。其余的电路结与图3相同。
2.输出阶梯设计输出阶梯如图4b所示,输出继电器的控制回路根据控制流程直观确定。例如,输出继电器Y1要求在步1、3得电,则将步1、3的辅助继电器M1、M3的常开触点并联,再与Y1的线圈串联即可。其余输出继电器的控制回路构成方法与此相同。
图4 逐步得电逐步失电型顺控系统梯形图
PLC技术展的**终趋势仍然是人们所争论的焦点之一。大多数人认为,PLC将会继续失去市场份额;更有甚者认为,在工业PC面前,PLC将会一步一步走向死亡;但也有一部分人相信,一些特殊工业应用领域仍将为PLC提供一定的市场份额。本文从11方面介绍了PLC在其上的应用趋势。
-
如何选择开关量输入模块?
PLC的输入模块是用来检测接收现场输入设备的信号,并将输入的信号转换为PLC内部接受的低电压信号。
1.输入信号的类型及电压等级的选择 常用的开关量输入模块的信号类型有三种:直流输入、交流输入和交流/直流输入。选择时一般根据现场输入信号及周围环境来决定。
交流输入模块接触可靠,适合于有油雾、粉尘的恶劣环境下使用;直流输入模块的延迟时间较短,还可以直接与接近开关、光电开关等电子输入设备连接。
PLC的开关量输入模块按输入信号的电压大小分类有:直流5V、24V、48V、60V等;交流110V、220V等。选择时应根据现场输入设备与输入模块之间的距离来决定。一般5V、12V、24V用于传输距离较近场合。如:5V的输入模块**远不得超过10m距离,较远的应选用电压等级较高的模块。
2.输入接线方式选择 接输入电路接线方式的不同,开关量输入模块可分为汇点式输入和分组式输入两种,如图1所示。
汇点式输入模块的输入点只共用一个COM端;而分组式输入模块是将分成若干组,一组共用一个COM,每组之间是分隔的。分组式输入模块的每点价格教高,如果输入信号之间不需要分开,应选择汇点式。
3.同时接通的输入点的数量
对于选用高密度的输入模块(32点、48点),应考虑该模块同时接通的输入点的数量一般不超过点数的60%。
-
S7-200系列 PLC的数据存储器寻址
在S7-200PLC中所处理数据有三种,即常数、数据存贮器中的数据和数据对象中的数据。
1.常数及类型
在S7-200的指令中可以使用字节、字、双字类型的常数,常数的类型可指定为十进制、
十六进制(6#7AB4)、二进制(2#10001100)或ASCII字符(‘SIMATIC’)。PLC不支持数据类型的处理和检查,因此在有些指令隐含规定字符类型的条件下,必须注意输入数据的格式。
2.数据存贮器的寻址
(1)数据地址的一般格式 数据地址一般由二个部分组成,格式为:Aal.a2。其中:A区域代码(I,Q,M,SM,V),al字节首址,a2位地址(0~7)。例如I10.1表示该数据在I存储区10号地址的第1位。
(2)数据类型符的使用 在使用以字节、字或双字类型的数据时,除非所用指令已隐含有规定的类型外,一般都应使用数据类型符来指明所取数据的类型。数据类型符共有三个,即B(字节),W(字)和D(双字),它的位置应紧跟在数据区域地址符后面。例如对变量存贮器有VBl00、VW100、VDl00。同一个地址,在使用不同的数据类型后,所取出数据占用的内存量是不同的。
3.数据对象的寻址
数据对象的地址基本格式为:An,其中A为该数据对象所在的区域地址。A共有6种:T(定时器),C(计数器),HC(高速计数器),AC(累加器),AIW(模拟量输入),AQW(模拟量输出)。
S7-200 CPU存储器范围和特性如表4-17所示。
表4-17 S7-200 CPU存储器范围和特性表
-
为什么说用PLC实现对系统的控制是非常可靠的
用PLC实现对系统的控制是非常可靠的。这是因为PLC在硬件与软件两个方面都采取了很多措施,确保它能可靠工作。事实上,如果PLC工作不可靠,就无法在工业环境下运用,也就不成其为PLC了。
1·在硬件方面:
PLC的输入输出电路与内部CPU是电隔离。其信息靠光耦器件或电磁器件传递。而且,CPU板还有抗电磁干扰的屏蔽措施。故可确保PLC程序的运行不受外界的电与磁干扰,能正常地工作。
PLC使用的元器件多为无触点的,而且为高度集成的,数量并不太多,也为其可靠工作提供了物质基础。
在机械结构设计与制造工艺上,为使PLC能安全可靠地工作,也采取了很多措施,可确保PLC耐振动、耐冲击。使用环境温度可高达摄氏50多度,有的PLC可高达80--90度。
有的PLC的模块可热备,一个主机工作,另一个主机也运转,但不参与控制,仅作备份。一旦工作主机出现故障,热备的可自动接替其工作。
还有更进一步冗余的,采用三取一的设计,CPU、I/O模块、电源模块都冗余或其中的部分冗余。三套同时工作,**终输出取决于三者中的多数决定的结果。这可使系统出故障的机率几乎为零,做到万无一失。当然,这样的系统成本是很高的,只用于特别重要的场合,如铁路车站的道叉控制系统。
2.在软件方面:
PLC的工作方式为扫描加中断,这既可保证它能有序地工作,避免继电控制系统常出现的"冒险竞争",其控制结果总是确定的;而且又能应急处理急于处理的控制,保证了PLC对应急情况的及时响应,使PLC能可靠地工作。
为监控PLC运行程序是否正常,PLC系统都设置了"看门狗"(Watchingdog)监控程序。运行用户程序开始时,先清"看门狗"定时器,并开始计时。当用户程序一个循环运行完了,则查看定时器的计时值。若超时(一般不超过100ms),则报警。严重超时,还可使PLC停止工作。用户可依报警信号采取相应的应急措施。定时器的计时值若不超时,则重复起始的过程,PLC将正常工作。显然,有了这个"看门狗"监控程序,可保证PLC用户程序的正常运行,可避免出现"死循环"而影响其工作的可靠性。
PLC还有很多防止及检测故障的指令,以产生各重要模块工作正常与否的提示信号。可通过编制相应的用户程序,对PLC的工作状况,以及PLC所控制的系统进行监控,以确保其可靠工作。
PLC每次上电后,还都要运行自检程序及对系统进行初始化。这是系统程序配置了的,用户可不干预。出现故障时有相应的出错信号提示。
正是PLC在软、硬件诸方面有强有力的可靠性措施,才确保了PLC具有可靠工作的特点。它的平均无故障时间可达几万小时以上;出了故障平均修复时间也很短,几小时以至于几分钟即可。
曾有人做过为什么要使用PLC的问卷调查。在回答中,多数用户把PLC工作可靠作为选用它的主要原因,即把PLC能可靠工作,作为它的**指标。
-
|