西门子6ES7953-8LL31-0AA0 西门子6ES7953-8LL31-0AA0
微信15800846971
西门子最好合作伙伴
详细信息
描述
引用是两个块之间的连接。
在LOGO!8中块连接器之间的连接组态和块参数之间的引用组态是标准化的。引用和组态现在就可以使用拖放来实现。本FAQ对比了LOGO!8设备和LOGO!0BA7设备之间组态引用的步骤。
组态LOGO!8需要安装LOGO!Soft Comfort 8.0或更高版本。
LOGO!8的LOGO!模块的步骤
- 在电路图中创建所需要的程序块。
- 使用拖放建立块连接器之间的连接。
- 单击每个程序块下的“display”(+)按钮来显示参数区。要创建引用的两个程序块都需要进行此操作。在每个块下面都会打开一个参数区,块参数会在表格中显示。“display”按钮只在可以使用或提供引用的块下显示。
-
在需要创建的引用块之间,将其中一个块输出连接的终端连接到另外一个块输入连接的终端。举例来说,可以用拖放来完成此操作。
图. 01
-
单击每个块下的“hide”(-)按钮来关闭参数区。
图. 02
注意
下面的工具可以用来编辑参数区(LOGO!8)
图标 | 功能 |
显示/隐藏所有块之间的引用线 | |
显示所有块的参数区 | |
隐藏所有块的参数区 |
到LOGO! 0BA7前的LOGO!模块的步骤
- 在电路图中创建需要的块。
- 使用拖放建立块的连接器之间的连接。
- 打开快的菜单,在里面通过双击块来组态引用。
-
在想要的参数上单击“引用”按钮。在下拉列表框中就会显示可以用来引用的块。单击想要的块来选定它。单击“OK”按钮来保存设置。
图. 03
块的引用和参数就会在电路中有绿色的显示。
图. 04
更多信息
关于“引用”的更详细的信息可以在LOGO!Soft Comfort(V1.7) 条目ID 24002694中还有LOGO!Soft Comfort online Help (V8.0)3.2.1.8部分, "Edit Parameter Field"章节,在条目ID 100782807中。
创建环境
本FAQ中的截图是在LOGO!Soft Comfort V8.0中创建的。
1 LOGO!App 简介
目前用户可以使用iTunes商店的应用软件LOGO!App连接和监控西门子LOGO!系列的PLC,软件名称如图1所示。在软件中成功组态LOGO! 设备的地址后,用户可以通过手机WIFI连接到LOGO!并可进行修改时钟和获取固件信息等操作。同时,用户可以监控输入/输出(以下简称I/O)状态,V存储区(以下简称VM)变量值和诊断信息,也可以添加监控的I/O和VM变量到趋势图查看一个概览图形。
图1应用程序名称
2 LOGO!App功能描述
2.1 接口配置
LOGO! App 支持IP地址和动态 DynDNS名称两种访问方式。 做法如下:
在图2中单击“Interface Configure”选项后进入图3界面单击 “By IP Address”选项,然后再单击 图标 ,进入图4设备添加界面。
图2设置功能界面 图3设备访问方式界面
在图4中单击“Add”按钮,进入图5中进行设备名称和设备IP地址设置,此处我们设置设备名称为“MyLogo”,IP地址为“192.168.1.108”,最后单击“Save”按钮保存此配置,页面会自动转入到图6界面。
图4设备添加界面 图5设备添加界面
在图6中长按 图标直到出现图7界面,在图7中我们通过“Select”选项来选择已有设备,然后进入图8界面。
图6设备选择界面 图7设备选择界面
这时在图8中可以看到IP地址已经显示在界面中,然后点击“Save”图标,界面将自动转到图9。
图8设备访问方式界面
2.2 设置时钟
在图9中单击“Set Clock”选项将进入图10界面,在图10中可点击“Read”按钮查看LOGO!时间,也可点击“Current”按钮查看当前时间,之后进入图11界面。
图9设置功能界面 图10设备访问方式界面
在图11中LOGO!系统需要停机完成读取操作,单击“YES”图标进入图12,同样我们点击“Current”按钮来获取当前时间,然后通过“Set”按钮将当前屏幕中的时间更新到LOGO!中,此时进入图13界面。
图11获取LOGO!时钟界面 图12设备访问方式界面
在图13中点击“YES”按钮来完成更新后启动LOGO!的操作。
图13更新时钟界面
2.3 查看固件版本
在图14中单击“Show FW Version”选项后系统将返回LOGO!的固件版本如图15。
图14设置功能界面 图15固件版本界面
3 LOGO!App软件监控模式
3.1 I/O 状态监视器
在图16中选择“Monitor”图标,然后选择“I/O Status Monitor”选项后进入图17界面可观察到输入点的变化,在图17中用户选择需要监控的变量。可以通过点击“Edit”按钮进入图18中进行修改。
图16设置功能界面 图17 I/O监控界面
图18设置功能界面
3.2 VM列表监视器
在图19中单击“VM Table Monitor”选项进入图20的变量监控界面,点击“Add”按钮进入图21的变量添加界面。
图19设置功能界面 图20 变量监控界面
在图21中填入变量名称、变量地址及变量数据类型后点击“Save”按钮,在变量监控界面图22中就可以监视或修改此变量的数值。
图21变量添加界面 图22 变量监控界面
此外,还可以用趋势图的方式来监控变量曲线。在图22中长按变量“speed”所在行,直至出现图23界面选择“Add To Chart”选项再返回图22界面,继续长按变量“speed”所在行,直至出现图24界面选择“Chart”选项,即进入图25的趋势图界面。
图23变量添加趋势图界面 图24 变量监控界面
图25趋势图界面
3.3 诊断监视器
在图26中单击“Diagnostic Monitor”选项后进入图27中可查看网络访问错误报警。
图26设置功能界面 图27 网络错误界面
如图28中选中“Network Access Error”标签后点击“Clear”按钮即可复位网络访问错误信息如图29所示。
图28网络选择错误界面 图29 网络错误监控界面
6RA70 (三相桥B6C)
6RA7018-6DS22-0 3AC 400V 485V 30A 325V 5A
6RA7025-6DS22-0 60A 10A
6RA7028-6DS22-0 90A 10A
6RA7031-6DS22-0 125A 10A
6RA7075-6DS22-0 210A 15A
6RA7078-6DS22-0 280A 15A
6RA7081-6DS22-0 400A 25A
6RA7085-6DS22-0 600A 25A
6RA7087-6DS22-0 850A 30A
6RA7025-6GS22-0 3AC 575V 690V 60A 325V 5A
6RA7031-6GS22-0 125A 10A
6RA7075-6GS22-0 210A 15A
6RA7081-6GS22-0 400A 25A
6RA7085-6GS22-0 600A 25A
6RA7087-6GS22-0 800A 30A
6RA7086-6KS22-0 3AC 690V 900V 720A 30A.
PLC的分类标准及基本类型
可编程控制器类型很多,可从不同的角度进行分类:
1按控制规模分
控制规模主要指控制开关量的入、出点数及控制模拟量的模入、模出,或两者兼而有之(闭路系统)的路数。但主要以开关量计。模拟量的路数可折算成开关量的点,大致一路相当于8~16点。
依这个点数,PLC大致可分为微型机、小型机、中型机及大型机、超大型机。
微型机控制点仅几十点,为OMRON公司的CPM1A系列PLC,西门子的Logo仅10点。
小型机控制点可达100多点。如OMRON公司的C60P可达148点,CQM1达256点。德国西门子公司的S7-200机可达64点。
中型机控制点数可达近500点,以至于千点。如OMRON公司C200H机普通配置最多可达700多点,C200Ha机则可达1000多点。德国西门子公司的S7300机最多可达512点。
大型机:控制点数一般在1000点以上。如OMRON公司的C1000H、CV1000,当地配置可达1024点。C2000H、CV2000当地配置可达2048点。
超大型机:控制点数可达万点,以至于几万点。如美国GE公司的90-70机,其点数可达24000点,另外还可有8000路的模拟量。再如美国莫迪康公司的PC-E984--785机,其开关量具总数为32k(32768),模拟量有2048路。西门子的SS-115U-CPU945,其开关量总点数可达8k,另外还可有512路模拟量。等等。
以上这种划分是不严格的,只是大致的,目的是便于系统的配置及使用。
一般讲,根据实际的I/O点数,凡落在上述不同范围者,选用相应的机型,性能价格比必然要高;相反,肯定要差些。
自然,也有特殊情况。如控制点数不是非常之多,不是非用大型机不可,但因大型机的特殊控制单元多,可进行热备配置,因而采用了大型机。
2按结构划分
PLC可分为箱体式及模块式两大类。微型机、小型机多为箱体式的,但从发展趋势看,小型机也逐渐发展成模块式的了。如OMRON公司,原来小型机都是箱体式,现在的CQM1则为模块式的。
箱体的PLC把电源、CPU、内存、I/O系统都集成在一个小箱体内。一个主机箱体就是一台完整的PLC,就可用以实现控制。控制点数不符需要,可再接扩展箱体,由主箱体及若干扩展箱体组成较大的系统,以实现对较多点数的控制。
模块式的PLC是按功能分成若干模块,如CPU模块、输入模块、输出模块、电源模块等等。大型机的模块功能更单一一些,因而模块的种类也相对多些。这也可说是趋势。目前一些中型机,其模块的功能也趋于单一,种类也在增乡。如同样OMRON公司C20系列PLC,H机的CPU单元就含有电源,而Ha机则把电源分出,有单独的电源模块。
模块功能更单一、品种更多,可便于系统配置,使PLC更能物尽其用,达到更高的使用效益。
由模块联结成系统有三种方法:
①无底板,靠模块间接口直接相联,然后再固定到相应导轨上。OMRON公司的CQM1机就是这种结构,比较紧凑。
②有底板,所有模块都固定在底板上。OMRON公司的C200Ha机,CV2000等中、大型机就是这种结构。它比较牢固,但底板的槽数是固定的,如3、5、8、10槽等等。槽数与实际的模块数不一定相等,配置时难免有空槽。这既浪费,又多占空间,还得占空单元把多余的槽作填补。
③用机架代替底板,所有模块都固定在机架上。这种结构比底板式的复杂,但更牢靠。一些特大型的PLC用的多为这种结构。
3按生产厂家分
目前生产PLC的厂家较多。但能配套生产,大、中、小、微型均能生产的不算太多。较有影响的,在中国市场占有较大份额的公司有:
德国西门子公司:它有SS系列的产品。有SS-95U、100U、115U、135U及155U。135U、155U为大型机,控制点数可达6000多点,模拟量可达300多路。最近还推出S7系列机,有S7-200(小型)、S7-300(中型)及S7-400机(大型)。性能比S5大有提高。
日本OMRON公司:它有CPM1A型机,P型机,H型机,CQM1、CVM、CV型机,Ha型、F型机等,大、中、小、微均有,特别在中、小、微方面更具特长,在中国及世界市场,都占有相当的份额。
美国GE公司、日本FANAC合资的GE-FANAC的90-70机也是很吸引人的。据介绍。它具有25个特点。诸如,用软设定代硬设定,结构化编程,多种编程语言,等等。它有914、781/782、771/772、731/732等多种型号。另外,还有中型机90-30系列,其型号有344、331、323、321多种;还有90-20系列小型机,型号为211。
美国莫迪康公司(施奈德)的984机也是很有名的。其中E984-785可安31个远程站点,总控制规模可达63535点。小的为紧凑型的,如984-120,控制点数为256点,在最大与最小之间,共20多个型号。
美国AB(Alien-Bradley)公司创建于1903年,在世界各地有20多个附属机构,10多个生产基地。可编程控制器也是它的重要产品。它的PLC-5系列是很有名的,其下有PLC-5/10,PLC-5/11,……PLC-5/250多种型号。另外,它也有微型PLC,SLC-500即为其中一种。有三种配置,20、30及40I/O配置选择,I/O点数分别为12/8、18/12及24/16三种。
日本三菱公司的PLC也是较早推到我国来的。其小型机FI前期在国内用得很多,后又推出FXZ机,性能有很大提高。它的中、大型机为A系列。AIS、AZC、A3A等。
日本日立公司也生产PLC,其E系列为箱体式的。基本箱体有E-20、E-28、E-40、E-64。其I/O点数分别为12/8、16/12、24/16及40/24。另外,还有扩展箱体,规格与主箱体相同其EM系列为模块式的,可在16~160之间组合。
日本东芝公司也生产PLC,其EX小型机及EX-PLUS小型机在国内也用得很多。它的编程语言是梯形图,其专用的编程器用梯形图语言编程。另外,还有EX100系列模块式PLC,点数较多,也是用梯形图语言编程。
日本松下公司也生产PLC。FPI系列为小型机,结构也是箱体式的,尺寸紧凑。FP3为模块式的,控制规模也较大,工作速度也很快,执行基本指令仅0?l微秒。
日本富士公司也有PLC。其NB系列为箱体式的,小型机。NS系列为模块式。
美国IPM公司的IP1612系列机,由于自带模拟量控制功能,自带通讯口,集成度又非常之高,虽点数不多,仅16入,12出,但性价比还是高的,很适合于系统不大,但又有模拟量需控制的场合。新出的lP3416机,I/O点数扩大到34入、12出,而且还自带一个简易小编程器,性能又有改进。
国内PLC厂家规模多不大。最有影响的算是无锡的华光。、它也生产多种型号与规格的PLC,如SU、SG等,发展也很快,在价格上很有优势。相信会在世界PLC之林中一定有其位置的。
西门子S7系列PLC的主要种类及应用软件
德国西门子(SIEMENS)公司生产的可编程序控制器在我国的应用也相当广泛,在冶金、化工、印刷生产线等领域都有应用。西门子(SIEMENS)公司的PLC产品包括LOGO,S7-200,S7-300,S7-400,工业网络,HMI人机界面,工业软件等。
西门子S7系列PLC体积小、速度快、标准化,具有网络通信能力,功能更强,可靠性更高。S7系列PLC产品可分为微型PLC(如S7-200),小规模性能要求的PLC(如S7-300)和中、高性能要求的PLC(如S7-400)等。
1.SIMATIC S7-200 PLC
S7-200 PLC是超小型化的PLC,它适用于各行各业,各种场合中的自动检测、监测及控制等。S7-200 PLC的强大功能使其无论单机运行,或连成网络都能实现复杂的控制功能。
S7-200PLC可提供4个不同的基本型号与8种CPU可供选择使用。
2.SIMATIC S7-300 PLC
S7-300是模块化小型PLC系统,能满足中等性能要求的应用。各种单独的模块之间可进行广泛组合构成不同要求的系统。与S7-200 PLC比较,S7-300 PLC采用模块化结构,具备高速(0.6~0.1μs)的指令运算速度;用浮点数运算比较有效地实现了更为复杂的算术运算;一个带标准用户接口的软件工具方便用户给所有模块进行参数赋值;方便的人机界面服务已经集成在S7-300操作系统内,人机对话的编程要求大大减少。SIMATIC人机界面(HMI)从S7-300中取得数据,S7-300按用户指定的刷新速度传送这些数据。S7-300操作系统自动地处理数据的传送;CPU的智能化的诊断系统连续监控系统的功能是否正常、记录错误和特殊系统事件(例如:超时,模块更换,等等);多级口令保护可以使用户高度、有效地保护其技术机密,防止未经允许的复制和修改;S7-300 PLC设有操作方式选择开关,操作方式选择开关像钥匙一样可以拔出,当钥匙拔出时,就不能改变操作方式,这样就可防止非法删除或改写用户程序。具备强大的通信功能,S7-300 PLC可通过编程软件Step 7的用户界面提供通信组态功能,这使得组态非常容易、简单。S7-300 PLC具有多种不同的通信接口,并通过多种通信处理器来连接AS-I总线接口和工业以太网总线系统;串行通信处理器用来连接点到点的通信系统;多点接口(MPI)集成在CPU中,用于同时连接编程器、PC机、人机界面系统及其他SIMATIC S7/M7/C7等自动化控制系统。
3. SIMATIC S7-400 PLC
S7-400 PLC是用于中、高档性能范围的可编程序控制器。
S7-400 PLC采用模块化无风扇的设计,可靠耐用,同时可以选用多种级别(功能逐步升级)的CPU,并配有多种通用功能的模板,这使用户能根据需要组合成不同的专用系统。当控制系统规模扩大或升级时,只要适当地增加一些模板,便能使系统升级和充分满足需要。
4. 工业通讯网络
通讯网络是自动化系统的支柱,西门子的全集成自动化网络平台提供了从控制级一直到现场级的一致性通讯,“SIMATIC NET”是全部网络系列产品的总称,他们能在工厂的不同部门,在不同的自动化站以及通过不同的级交换数据,有标准的接口并且相互之间完全兼容。
5. 人机界面(HMI)硬件
HMI硬件配合PLC使用,为用户提供数据、图形和事件显示,主要有文本操作面板TD200(可显示中文),OP3,OP7,OP17等;图形/文本操作面板OP27,OP37等,触摸屏操作面板TP7,TP27/37,TP170A/B等;SIMATIC面板型PC670等。个人计算机(PC)也可以作为HMI硬件使用。HMI硬件需要经过软件(如ProTool)组态才能配合PLC使用。
6. SIMATIC S7工业软件
西门子的工业软件分为三个不同的种类:
(1)编程和工程工具 编程和工程工具包括所有基于PLC或PC用于编程、组态、模拟和维护等控制所需的工具。STEP 7标准软件包SIMATIC S7是用于S7-300/400,C7 PLC和SIMATIC WinAC基于PC控制产品的组态编程和维护的项目管理工具,STEP 7-Micro/WIN是在Windows平台上运行的S7-200系列PLC的编程、在线仿真软件。
(2)基于PC的控制软件 基于PC的控制系统WinAC允许使用个人计算机作为可编程序控制器(PLC)运行用户的程序,运行在安装了Windows NT4.0操作系统的SIMATIC工控机或其它任何商用机。WinAC提供两种PLC,一种是软件PLC,在用户计算机上作为视窗任务运行。另一种是插槽PLC(在用户计算机上安装一个PC卡),它具有硬件PLC的全部功能。WinAC与SIMATIC S7系列处理器完全兼容,其编程采用统一的SIMATIC编程工具(如STEP 7),编制的程序既可运行在WinAC上,也可运行在S7系列处理器上。
(3)人机界面软件 人机界面软件为用户自动化项目提供人机界面(HMI)或SCADA系统,支持大范围的平台。人机界面软件有两种,一种是应用于机器级的ProTool,另一种是应用于监控级的WinCC。
ProTool适用于大部分HMI硬件的组态,从操作员面板到标准PC都可以用集成在STEP 7中的ProTool有效地完成组态。ProTool/lite用于文本显示的组态,如:OP3,OP7,OP17,TD17等。ProTool/Pro用于组态标准PC和所有西门子HMI产品,ProTool/Pro不只是组态软件,其运行版也用于Windows平台的监控系统。
WinCC是一个真正开放的,面向监控与数据采集的SCADA(Supervisory Control and Data Acquisition)软件,可在任何标准PC上运行。WinCC操作简单,系统可靠性高,与STEP 7功能集成,可直接进入PLC的硬件故障系统,节省项目开发时间。它的设计适合于广泛的应用,可以连接到已存在的自动化环境中,有大量的通信接口和全面的过程信息和数据处理能力,其最新的WinCC5.0支持在办公室通过IE浏览器动态监控生产过程。
鼠笼式异步电动机降压起动方法控制电路比较
鼠笼式异步电动机降压起动的方法有定子绕组串电阻(或电抗)降压启动、星形一三角形降压启动、自藕变压器降压启动和使用软起动器等。
定子绕组串接电阻降压启动由于电阻上有热能损耗,如用电抗器则体积、成本又较大,因此该方法很少用。
自耦变压器降压启动的方法的特点:自耦变压器降压启动优点是可以按允许的启动电流和所需的启动转矩来选择自藕变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y或△接法都可以使用。缺点是设备体积大,投资较贵。
星形一三角形降压启动的最大优点是设备简单,价格低,因而获得较广泛的应用。缺点是只用于正常运行时为△接法,降压比固定,有时不能满足启动要求。
S7-200 PLC编程——有反馈的电动机星形—三角形起动器
这个示例程序控制三相感应电动机的星形—三角形起动过程。例如,一旦星形起动器出现故障,起动的反馈电路就有发现它。在5秒钟延时之后,SIMATIC S7-200就小切换到三角形连接,这样就能避免可能造成的破坏。
与输入点I0.0相连的开机点动开关(ON)接通后,电动机绕组接成星形工作方式起动。与输出点Q0.3相连的信号灯指示各种可能出现的故障。
程序和注释
当输入点l0.0相连的开机开关(0N)动作后,电动机绕组接成星形工作方式起动。如果没有起动器故障信号,电动机绕组将在5秒钟后切换到三角形连接方式。故障信号山与输出点Q0.3相连的信号灯指示。当故障排除后,操作员按与输入点I0.6相连的确认键,即可消除故障信号。起动器反馈信号通过输入点I0.3、I0.4和I0.5引入。
当关机点动开关或电动机电路断路器(分别与输入点I0.1和I0.2连接)动作时,电动机关机。如果开机开关和关机开关同时动作,电动机仍然处于关机状态。
“接通星形起动器”、“起动定时器”和“接通主电源起动器”部分增加了一个条件:只有在无故障信号(Q0.3)出版时才动作。除此之外,为相关的起动器
设置下述的存储器标志位:星形起动器(Q0.1 ),主电源起动器(Q0.0),以及起动定时器(T37)。
“起动器反馈”部分是新的。从原理上讲,反馈就是将输出信号和表示起动器实际状态的输入信号相比较。
输出信号的状态分别和下述反馈输入信号比较:主电源起动器的状态(I0.3),星形起动器的状态(I0.4),三角形起动器的状态(I0.5)。如果有差异就起动定时器T38,T38的预置时问为2秒。这段延迟时问对应起动器动作的最长时间。
如果T38溢出后,状态仍小同,故障指示输出点Q0.3被置位。这个故障信号可以用与输
入点I0.6相连的反馈确认键复位。
该程序的长度为70个字。
S7-200PLC中断优先级和排对等候
优先级是指多个中断事件同时发出中断请求时,CPU对中断事件响应的优先次序。S7-200规定的中断优先由高到低依次是:通信中断、I/O中断和定时中断。每类中断中不同的中断事件又有不同的优先权,如表2所示。
一个程序中总共可有128个中断。S7-200在各自的优先级组内按照先来先服务的原则为中断提供服务。在任何时刻,只能执行一个中断程序。一旦一个中断程序开始执行,则一直执行至完成。不能被另一个中断程序打断,即使是更高优先级的中断程序。中断程序执行中,新的中断请求按优先级排队等候。中断队列能保存的中断个数有限,若超出,则会产生溢出。中断队列的最多中断个数和溢出标志位如表3所示。
表2中断事件及优先级
优先级分组 |
组内优先级 |
中断事件号 |
中断事件说明 |
中断事件类别 |
通信中断 |
0 |
8 |
通信口0:接收字符 |
通信口0 |
0 |
9 |
通信口0:发送完成 |
||
0 |
23 |
通信口0:接收信息完成 |
||
1 |
24 |
通信口1:接收信息完成 |
通信口1 |
|
1 |
25 |
通信口1:接收字符 |
||
1 |
26 |
通信口1:发送完成 |
||
I/O中断
|
0 |
19 |
PTO 0脉冲串输出完成中断 |
脉冲输出 |
1 |
20 |
PTO 1脉冲串输出完成中断 |
||
2 |
0 |
I0.0上升沿中断 |
外部输入 |
|
3 |
2 |
I0.1上升沿中断 |
||
4 |
4 |
I0.2上升沿中断 |
||
5 |
6 |
I0.3上升沿中断 |
||
6 |
1 |
10.0下降沿中断 |
||
7 |
3 |
I0.1下降沿中断 |
||
8 |
5 |
I0.2下降沿中断 |
||
9 |
7 |
I0.3下降沿中断 |
||
10 |
12 |
HSC0当前值=预置值中断 |
高速计数器 |
|
11 |
27 |
HSC0计数方向改变中断 |
||
12 |
28 |
HSC0外部复位中断 |
||
13 |
13 |
HSC1当前值=预置值中断 |
||
14 |
14 |
HSC1计数方向改变中断 |
||
15 |
15 |
HSC1外部复位中断 |
||
16 |
16 |
HSC2当前值=预置值中断 |
||
17 |
17 |
HSC2计数方向改变中断 |
||
18 |
18 |
HSC2外部复位中断 |
||
19 |
32 |
HSC3当前值=预置值中断 |
||
20 |
29 |
HSC4当前值=预置值中断 |
||
21 |
30 |
HSC4计数方向改变 |
||
22 |
31 |
HSC4外部复位 |
||
23 |
33 |
HSC5当前值=预置值中断 |
||
定时中断 |
0 |
10 |
定时中断0 |
定时 |
1 |
11 |
定时中断1 |
||
2 |
21 |
定时器T32 CT=PT中断 |
定时器 |
|
3 |
22 |
定时器T96 CT=PT中断 |
表3 中断队列的最多中断个数和溢出标志位
队列 |
CPU 221 |
CPU 222 |
CPU 224 |
CPU 226和CPU 226XM |
溢出标志位 |
通讯中断队列 |
4 |
4 |
4 |
8 |
SM4.0 |
I/O中断队列 |
16 |
16 |
16 |
16 |
SM4.1 |
定时中断队列 |
8 |
8 |
8 |
8 |
SM4.2 |
PLC市场增长点及格局变化趋势
1. PLC市场增长点
区域增长点:由于华东、华南地区PLC应用较为普遍,市场规模接近饱和,除了PLC更新影响因素外,新的PLC市场增长点不明显;而华中、华北、东北地区国家区域经济、城市战略的确定,武汉城市圈等的兴起,以及经济增长中更加注重环保、节能,工业领域对于PLC应用需求将随之增长,同时南昌、合肥、郑州、太原等地大规模建设城市轨道交通,PLC市场规模也将水涨船高,这些区域未来PLC应用市场潜力巨大。
行业增长点:由于我国城镇化进程的加快,城市水处理对于PLC应用需求也随之增长,另外国家加大对于铁路、轨道交通建设的投入力度,未来对于大型PLC的应用需求必然有所提高,是大型PLC应用的市场增长点。
2.PLC市场格局变化趋势
在我国应用的PLC,几乎涵盖了世界所有的品牌,呈现八国联军的态势,但从行业上分,有各自的势力范围。大中型集控系统采用欧美PLC居多,小型控制系统、机床、设备单体自动化及OEM产品采用日本的PLC居多。欧美PLC在网络和软件方面具有优势,而日本PLC在灵活性和价位方面占优势。具体的市场格局是西门子、罗克韦尔、施耐德在大型PLC市场三分天下;中型PLC市场西门子一枝独秀;小型PLC则是日系领衔,西门子紧追——大的市场格局未曾改变,但是需要注意一些潜在发生的趋势和力量。
在中国市场上很多著名品牌都是在中国市场上传统的供应商,在很多领域占得了先机,相对应的是施耐德和LS这些后来者虽然市场快速增长,但是距离先行者仍有一定的差距。某些品牌会侧重于一些行业。
中型PLC是各家追逐的战略重点。几乎每家都在加强弥补在中型PLC方面的产品缺失,以期在西门子独大的这个专业分治区得一杯羹。不过在短期内,还未看到改变格局的力量。
在小型PLC市场,需要关注本土力量。士别三日,当刮目相看。几年前,我们还经常形容,纯粹本地的PLC销售不足千万。但是到今天,即使不论台达的成功,越来越多的国内企业开始进入PLC市场,并且采用一种更加有效的进攻方式——往往已经在变频器领域取得了成功,开始策划整体的FA方案,进入PLC、HMI和伺服领域,以北京和利时为代表的本土厂商就是这样。这比以往单纯投入PLC业务,更加容易被市场接纳。相信,如果未来格局发生变革,则第一波就在小型PLC,发起者就是本土厂商。
西门子S7 PLC移位寄存器指令(SHRB)
移位寄存器指令是可以指定移位寄存器的长度和移位方向的移位指令。其指令格式如图所示。
说明:(1)移位寄存器指令SHRB将DATA数值移入移位寄存器。梯形图中,EN为使能输入端,连接移位脉冲信号,每次使能有效时,整个移位寄存器移动1位。DATA为数据输入端,连接移入移位寄存器的二进制数值,执行指令时将该位的值移入寄存器。S_BIT指定移位寄存器的最低位。N指定移位寄存器的长度和移位方向,移位寄存器的最大长度为64位,N为正值表示左移位,输入数据(DATA)移入移位寄存器的最低位(S_BIT),并移出移位寄存器的最高位。移出的数据被放置在溢出内存位(SM1.1)中。N为负值表示右移位,输入数据移入移位寄存器的最高位中,并移出最低位(S_BIT)。移出的数据被放置在溢出内存位(SM1.1)中。
(2)DATA和S-BIT的操作数为I, Q, M, SM, T, C, V, S, L 。数据类型为:BOOL变量。N的操作数为VB, IB, QB, MB, SB, SMB, LB, AC, 常量。数据类型为:字节。
(3)使ENO = 0的错误条件:0006(间接地址),0091(操作数超出范围),0092(计数区错误)。
(4)移位指令影响特殊内部标志位:SM1.1(为移出的位值设置溢出位)。