品牌:SKIIP83ANB15T46
发货:3天内
信息标签:SKIIP83ANB15T46,库存,代理,库存产品代理
SKIIP83ANB15T46 我们采取的处理措施有:
西门康模块代理
程先生 139 188 64473 qq:937926739
SKIIP83ANB15T46
1,通讯线路和变频器输入输出分开布线,不能分开时,二者**不能平行走线,只能交叉90度走线。
2,通讯线路必须使用屏蔽电缆,且电缆的屏蔽层必须接至控制线路的公共端。
3,通讯线路的露出SKIIP83ANB15T46线头尽量短,并且保证未屏蔽的部分尽量短。
4,RS485模块抗干扰模块远离变频器输入输出线路。
5,降低变频器的载波频率。SKIIP83ANB15T46
由此可见,在出现通讯干扰的问题时,一方面考虑线路的布线问题,尤其是变频器控制时,由于变频器的输出电压电流中含有很多的谐波成分,此时SKIIP83ANB15T46布线问题尤其显得重要。另一方面还经考虑变频器的载波频率问题,当载波频率调得太高时,也会对通讯造成干扰。
在通讯输入点和COM点并联一个电容好象也可以抗干扰
随着PC技术的飞速发展,使得IPCSKIIP83ANB15T46(工业控制计算机)以及基于IPC的应用技术同样也得到了突飞猛进的发展。同时,随着Internet技术的应用和所有生产信息过程和控制信息过程的集成与发展,并可通过Internet/Intranet浏览生产过程信息流中的制造过程、操作和监控现场智能设备等,IPC越来越多地承担着SCADA的人机交互控制任务和协同下级小型控制器或智能现场设备的控制任务。总体而言,IPC还是**适合应用于自动化控制平台的。但作为传统主流控制器的PLSKIIP83ANB15T46C,它拥有稳定性好、可*性高、逻辑顺序控制能力强等优点,在自动化控制领域具有不可替代的优势。但有一大遗憾:其封闭式架构、封闭式系统(研发必须具备自己或OEM的CPU、芯片组、BIOS、操作系统、梯形图编程软件)、较差的开放性势必会造成其应用上的壁垒,也增加了用户维修的难度和集成的成本。有人断言,在不久的将来,基于PC的控制器将会逐步取代PLC而成为主流控制设备。为了改善这种局面,传统PLC生产厂家正在逐步将PLC的功能PC化(如Siemens的WinAC)、而IPC厂家也逐步将IPC的逻辑控制功能PLC化,使PLC和SKIIP83ANB15T46IPC在功能和规格方面越来越接近,由此就出现了基于PLC和IPC技术的中间控制器:PC-based PLC。
PC-based PLC也称嵌入式控制器,它不再像IPC那样以机箱加主板为主体结构,再搭配诸如A/D、D/A、DI/DO等功能I/O板卡的组合产品,而是一个独立的基于嵌入式PC技术的专用系统,适合应用于小型的SCADA系统。如泓格的I-8000系列, 其主机内部是40MHz主频的80188 CPU,操作系统为兼容DOS的MiniOS7,其编程环境是基于PC的标准C语言程序,程序开发过程与PLC极其相似:首先在PC上编写常驻任务程序,并将其编译好后传送到主机内的Flash上、再让其脱机运行。另外为了使其具备PLC的优势特性,PC-based PLC也可使用梯形图编程,如泓格的ISaGRAF(配合I-8417/8817主机),相对于SKIIP83ANB15T46PLC而言,PC-based PLC的优势在于拥有IPC强大的Computing、Data Processing和Communication功能,在软件方面,PC-based PLC支持IEC-61131-3(LD、SFC、FBD、IL、ST)的五种国际标准语言和软逻辑。由于以上特点,PC-based PLC将会更加开放和标准化,能适应更加复杂的控制和管控一体化信息的需求。
总的来说,IPC是开放式架构、开放式系统,PLC则是封闭式架构、封闭式系统,而PC-based PLC介于二者之间,是开放式架构、封闭式系统。严格地说,ISKIIP83ANB15T46PC一般承担着管理控制任务和协同下级小型控制器或智能现场设备的控制任务,而PLC一般用作现地控制器。
脱水机现代化驱动
脱水机包括分泌机,离心机等,采用交流异步电机直接驱动,低速进料,高速脱水;广泛应用于造纸,染整,食品制药,制糖,化工等行业.
现代化的脱水机必须满足不同材料采用不同的转速脱水的需要,因此脱水机的转速必须要能调整,以满足工艺需要.过去大都采用高低速电机的方式,低速加减速机作为低速下料,高速采用另外一个电机驱动,降速时采用机械式抱闸,传动系统复杂故障率较高;因为高速电机容量较大,加上脱水槽的惯性较大,因此起动电流极大且持续时间较长,运转效率较低,且无法调速.
二、易能EDS1000系列变频器特点
目前也有采用变频器驱动单台电机方式,低速进料高速脱水的控制;但是变频器若采用VF或电压空间矢量控制技术则本身有共振频率段使得机械震动大,低速转矩不足会造成过载现象.
采用易能EDS1000系列无速度传感器矢量控制变频器能够弥补以上缺失,其特点如下:
*低转速转矩大矢量控制变频器能够静态动态侦测电机参数,达到额定转矩输出,能解决一般传统变频器所带来低速转矩不足,震动大的问题.
*调速范围大允许0 ~ 400 HZ运转,在低速时可以达到150%额定转矩输出.
*直结式驱动不必使用皮带轮传动,可以直SKIIP83ANB15T46结式驱动;降低机械震动,皮带松紧问题等,效率更高,成本及售后服务更低.
三、易能EDS1000系列变频器在脱水机上的应用和参数设置
摘 要:重点介绍了溪洛渡水电站主变压器的运输条件、性能参数、布置安装、中性点接地方式和水冷却器的选择,经过对国内外主要变压器厂收资的分析,**了溪洛渡水电站主变压器的型式。
关键词:主变压器;参数;选型;单相变压器;组合式三相变压器;现场组装三相变压器;技术分析;经济分析;溪洛渡水电站
前言
由于我国社会经济的迅速发展,华东、华中和沿海地区都出现用电紧张的情况,对电力系统供电数量和质量的要求越来越高。由于这些地区能源匮乏和对环境保护的要求,急需从外地大量输入高质量的电能,而西南地区的川、滇等省水电资源蕴藏丰富,可供开发的水电资源占全国的70%以上。建设大型或超大型水电站,为华东、华中和沿海地区提供高质量廉价的水电,不但能实SKIIP83ANB15T46现全国电力资源优化配置和实现“西电东送”,还能发挥拦沙、防洪、改善下游航运条件等综合效益。现以金沙江上拟建的巨型水电站———溪洛渡水电站为例分析水电站主变压器的选择。
2 溪洛渡水电站简介
溪洛渡水电站是金沙江下游上的一座巨型水电站,地处四川省雷波县和云南省永善县境内,上接白鹤滩电站尾水,下与向家坝水库相接。电站供电华东、华中,兼顾川、滇两省用电需要,是金沙江“西电东送”距离负荷中心**近的骨干电源之一,也是金沙江上**的一座水电站。电站装机18台,单机容量700 MW,总装机容量达12 600 MW,单机**容量855 MVA。年平均发电量571SKIIP83ANB15T46.2亿kW·h,年利用小时数4 530h,水库总库容126.7亿m3,调节库容64.6亿m3,具有不完全季调节性能,保证出力3 395 MW。
电站地处高山峡谷,河床狭窄。根据枢纽布置和地形条件,电站设左、右两个地下厂房,各布置9 台机组。主厂房、主变压器室和尾水调压室相互平行,呈三洞式布置。发电机引出回路选用全联式离相封闭母线与主变低压端子相连,主变压器的500kV出线采用超高压挤包绝缘电缆通过垂直竖井引至地面开关站。
3 运输条件
超大型水电站机电设备重大件包括:水轮机转轮、主变压器、桥机主梁、主轴、转子中心体、转子支架扇形体、上机架中心体和下机架中心体、定子机座以及水轮机顶盖、座环等,而主变压器是运输的一个重要环节。超大型水电站一般地处偏僻的高山峡谷区,地形条件复杂,交通运输设施和条件恶劣,因此机电设备重大件运输方案是电站设计初期重要的研究课题之一。主变压器一般可通过水运运至电站附近码头,上岸后经电站专用公路运抵工地;或者通过铁路和专用铁路运至电站附近车站(运输尺寸应控制在二级超限内)后,再通过电站专用公路运至工地。这两种情况均需经过详细周密的经济技术比较后,才能**终确定电站机电设备重大件的运输方案。溪洛渡水电站主变压器单相运输尺寸约5.0m×4.0m×4.0m,运输重量约178t,共54相,运输任务繁重,经专题研究后提出先通过专用铁路运至电站附近车站,再通过电站专用公路运至电站工地。
4 主变压器主要参数和中性点接地方式
4.1 额定值SKIIP83ANB15T46
随着发电设备的设计和制造技术的发展,发电机组单机容量越来越大,已建二滩水电站单机容量为550 MW,在建三峡、龙滩和小湾水电站单机容量均为700 MW,拟建的溪洛渡水电站单机容量也为700 MW,并且发电设备的单机容量还有增大的趋势。考虑到许多电站的发电机均有设置**容量的要求,因此需要有相应的大型变压器设计和制造技术相匹配。根据溪洛渡水电站的具体条件,选择的主变压器的主要技术参数如下:
额定容量:855 MVA;额定电压:高压525kV,低压20kV;接线组别:YN,d11;阻抗电压:15%~17%;绝缘水平4.2 中性点接地方式
根据水电站升压变压器中性点接地方式及其实践经验,在电力系统中运行变压器的中性点接地方式,将直接影响电力系统的内部过电压水平、电气设备的绝缘强SKIIP83ANB15T46度、系统的稳定、继电保护、开关遮断容量、对通信线路干扰、变压器中性点过电压保护方式、变压器中性点绝缘水平以及变压器制造等。因此,变压器中性点的接地方式应根据诸方面的影响因素进行综合的技术经济分析和比较后加以确定。
现阶段我国超高压电压等级为500kV,对500kV变压器中性点接地方式有两种不同观点:一种沿用220kV系统所采用的部分变压器中性点接地的方式,这样可采用简单可靠的零序电流继电保护,断路器遮断容量不受单相短路电流的限制,同时单相接地对通信线路的干扰也较小;另一种为500kV变压器全部采用中性点直接接地,变压器中性点绝缘水平**,便于变压器制造,变压器中性点不会失地,也不会产生不接地的孤立系统。但两者均不能有效地解决单相短路电流在变压器中性点产生的过电压问题,都存在明显的局限性。
为了限制单相短路电流,宜采用变压器中性点经小电抗器的接地方式,只要小电抗器选择适当就可以起到变压器中性点部分接地的作用。经计算分析,经小电抗SKIIP83ANB15T46器接地的变压器中性点的过电压比不接地变压器中性点的过电压低得多,不会产生危害性很大的谐振过电压和弧光接地过电压,不易产生 失步过电压。500kV变压器中性点经小电抗器接地已投入工程应用,如葛洲坝水电站大江电厂500kV工程、隔河岩水电站和岩滩水电站500kV工程,分别于20世纪80年代末期和90年代初期投运,运行正常,收到了良好的效果。
通过以上技术分析可见,超大型水电站500kV主变压器中性点接地方式,一般采用经小电抗器接地方式,且变压器中性点采用避雷器保护,并应根据工程具体情况选用适当的中性点小电抗器。经过论证,溪洛渡水电站的主变压器中性点采用小电抗器的接地方式。
5 主变压器型式
根据溪洛渡水电站的具体条件,主变压器型式考虑了四种可能的方案,即三相、单相、组合式三相和现场组装三相变压器。
5.1 三相变压器
三相变压器在设计制造及运行管理上具有一定的优SKIIP83ANB15T46点,但运输重量巨大,超过了铁路和公路的运输极限,且运输费用昂贵。溪洛渡水电站主变压器若采用三相变压器方案,运输重量将达到480t,无论是铁路运输或公路运输均不能实现,故不宜采用。
5.2 单相变压器组方案
单相变压器组方案由三台普通单相变压器组合成三相变压器,具有设计制造经验成熟、运输重量及运输尺寸小、占用安装布置场地大和安装时间短的特点。
5.3 组合三相变压器方案
经研究分析,由三台特殊单相变压器组合的三相变压器方案设计及制造经验成熟,应用较广。特殊单相变压器的结构与普通单相变压器基本相同,一种组合方式是SKIIP83ANB15T46三台单相变压器分别装在各自的下节油箱中,在运到安装地点前用副箱盖各自密封,到达使用现场后换上共用箱盖使三台单相变压器连成一体,形成三相变压器;另一种组合方式采用单独的油箱,仅用引线管道将三台连成一体,此种变压器相当于将三台独立的单相变压器的油路连接在一起。目前国内已基本不采用**种方式(共用箱盖),而采用第二种组合方式。这种方式运输重量小、运输尺寸小、布置安装占地面积小、安装时间较短。
5.4 现场组装三相变压器方案
现场组装三相变压器又称解体运输变压器,这种变压器在外SKIIP83ANB15T46形上看与普通三相变压器相同,但由于受运输条件的限制,变压器的内部结构做成可拆卸的若干部分,运输时各部分分别运输,在现场再组装成整体。
**早的解体运输变压器是将铁芯、线圈分成若干部分运输,到现场后组装。近年来,解体变压器采用了新技术,将铁芯、线圈、油箱分成各自保持着基本结构的运输单元,进行解体运输。解体后再组装的范围被限制在**小程度。
这种方式运输重量小、运输尺寸大(油箱)、布置占地面积小、设备本体成本**。但安装时间长,对安装场地、设备和环境条件、安装工艺要求严格。