分析仪器
5072PR
发布时间:2016-02-20 14:10:52 产品编号:GY-5-73221974  分享
价格:0.00/台
品牌:奥林巴斯
起订:1台
供应:100台
发货:3天内
信息标签:5072PR,供应,仪器仪表,分析仪器

点击这里进行电话呼叫
点击这里QQ咨询
联系时一定要说在【贸易商务资源网】看到的将给您优惠!如果您也想和该公司一样在网站发信息有好排名,点击立即免费注册,发布产品推广
5072PR奥林巴斯/5073PR/5077PR/北京泰如服务中心5072PR/5073PR/5077PR新旧热卖

奥林巴斯5072PR/5073PR/5077PR/北京泰如服务中心5072PR/5073PR/5077PR新旧热卖

奥林巴斯5072PR/5073PR/5077PR/北京泰如服务中心5072PR/5073PR/5077PR新旧热卖

奥林巴斯5072PR5073PR5077PR脉冲接收器规格及参数

Panametrics-NDT Olympus

北京泰如电子科技有限公司
电话:010-57464568
手机:13699112842
QQ:3081402071

奥林巴斯5072PR5073PR5077PR脉冲接收器规格及参数 脉冲发生器 5072PR 5073PR 5077PR 脉冲式 (主要一声):  负脉冲 负方波 上升时间 10%至90%): 通常为5类,10 ns**值 通常2纳秒 通常情况下10类,20 ns**值 (上升和下降时间) 可用脉冲电

奥林巴斯5072PR5073PR5077PR脉冲接收器规格及参数

北京泰如电子科技有限公司
电话:010-57464568
手机:13699112842
QQ:3081402071

脉冲发生器

5072PR

5073PR

5077PR

脉冲式 (主要一声):

负脉冲

负方波

上升时间
(10%至90%):

通常为5类,10 ns**值

通常<2纳秒

通常情况下“10类,20 ns**值
(上升和下降时间)

可用脉冲电压:(空载)

-360 V

-180 V

选择-400 V,-300 V,-200 V,-100 V

可用脉冲能量:

13,26,52或104μjoules

2,4,8,或16μjoules

ñ /

阻尼:

选择15,17,20,25,36,50,
100或500欧姆

12,14,17,20,25,33,50或
100欧姆

ñ /

脉冲宽度:

ñ /

ñ /

10个预设固定宽度:15-20,10,7.5,5.0-6.0,3.5-4.0,2-2.25,1.0,0.5,0.25,0.1兆赫。
可变+ / -25%的罚款游标每个宽度调整。

模式:

  超声波测厚仪

脉冲回波或直通传输

 

隔离(53分贝分钟):

通常在10兆赫六十二分贝

通常在50兆赫六十二分贝

通常在10兆赫六十二分贝

脉冲重复率:
(内部)

100,200,500,1000,2000或5000赫兹

200,500,1000,2000,5000,10000,或20000

100,200,500,1000,2000,5000赫兹,但**的PRF限于:0.5兆赫tranducers 2000赫兹,1000兆赫0.25兆赫传感器,50赫兹,0.1 MHz的传感器。

脉冲重复率:

0-6千赫
(外部)

0-10千赫

0-5千赫(PRF的观察与脉冲宽度的限制)

同步输出脉冲:

3伏到50欧姆

   

外部触发输入:
(以千欧系列10)

酚醛为2.4?1000
**小脉冲宽度为200 ns

酚醛为2.4?1000
**小脉冲宽度为200 ns

酚醛为2.4?1000
50 ns的**小脉冲宽度

奥林巴斯5072PR,5073PR,5077PR脉冲接收器参数

接收机

5072PR脉冲接收器

5073PR脉冲接收器

5077PR脉冲接收器

**带宽:
(-3分贝,当RL = 50欧姆)

1千赫 - 35兆赫

1千赫 - 75兆赫

1千赫 - 35兆赫

电压增益:

0-59,1 dB步进(当RL = 50欧姆)

0-39,1 dB步进(当RL = 50欧姆)

0-59,1 dB步进(当RL = 50欧姆)

**阶段:

 

反相或非反相(内部开关)

 

衰减范围:

0-59,1 dB步进(当RL = 50欧姆)

0-49,1 dB步进(当RL = 50欧姆)

0-49,1 dB步进(当RL = 50欧姆)

高通滤波器:

1千赫(出)或1 MHz

1千赫(出)或5兆赫

1千赫(出)或1 MHz

低通滤波器:

35兆赫(出)或10 MHz

75兆赫(出)或20 MHz

35兆赫(出)或10 MHz

噪音:

70μV的的PK - PK的典型,简称输入,35兆赫带宽=

200μV的的PK - PK的典型,简称输入,75兆赫带宽=

70μV的的PK - PK的典型,简称输入,35兆赫带宽=

**信号输出:

 

+ / - 1V的峰。,终止50欧姆

 

输入电阻:
(通轴传动)

线性范围为500欧姆
100欧姆>线性范围

线性范围为100欧姆
50欧姆的水平>线性范围

500欧姆

输出阻抗:

50欧姆

50欧姆

50欧姆

**输入功率:

400毫瓦

400毫瓦

500毫瓦

奥林巴斯5072PR,5073PR,5077PR脉冲接收器特性

单位

5072PR,5073PR,5077PR

输入/输出:

外部触发输入,同步输出,射频输出,吨/ R和R:所有BNC母头连接器

权力的主要要求:

100/120/220/240伏交流电,50/60赫兹

工作温度:

0-50 ° C

尺寸和重量:

7“宽x 3.5”高x 9.1“D类(178毫米x 89毫米× 232毫米); 5磅(2.3公斤)

订购信息:每个型号是手工附带一个电源线和经营者。 传感器和电缆单独出售。 我们的销售部门提供详细讨论您的应用程序,并协助传感器的选择。

The 5072PR, 5037PR, and 5077PR manually controlled ultrasonic pulser-receivers are for both conventional and high frequency applications.

These affordable and reliable manually controlled pulser-receivers provide the perfect building blocks for both conventional and high frequency applications. Each instrument is designed for superior low noise receiver response and high performance pulser control. 
When used with an appropriate transducer and analog or digital oscilloscope, Panametrics pulser-receivers provide the perfect starting point for ultrasonic flaw detection, thickness gaging, materials characterization, and transducer characterization.

Features & Benefits

• Three models provide optimization for both conventional and high frequency applications 
• Broadband Spike (5072 and 5073) or Tunable Square Wave (5077) transducer excitation models available 
• Front panel controls permit quick and easy setup of parameters for optimizing signal response 
• Each model delivers a wide dynamic range with 1 dB sensitivity adjustments made through a front panel lever switch 
• Low noise receiver amplification and pulser optimization ensure superior signal-to-noise characteristics 
• Superior isolation of receiver from pulser main bang when operating in thru-transmission mode 
• +/-1 volt RF output into 50 ohm load 
• Small, lightweight packaging

Three Models To Fit Your Testing Needs

Model 5072PR: 35 MHz (-3 dB) ultrasonic bandwidth and spike pulser is ideal for general testing. The impulse pulser provides optimal broadband excitation resulting in superior time domain recovery especially at higher frequencies (between 15-30 MHz). 
Model 5073PR: 75 MHz (-3 dB) ultrasonic bandwidth with fast rise time spike pulser extends performance for work with 50 MHz transducers in applications that challenge limits in axial and near surface resolution. 
Model 5077PR: 35 MHz (-3 dB) ultrasonic bandwidth and square wave pulser-receiver is ideal for maximizing response in scattering materials. The square wave pulser is particularly advantageous when testing with transducers of 10 MHz or lower, as adjustable pulse width optimizes pulse energy, resulting in superior signal-to-noise characteristic.

Ultrasonic Pulser-Receivers

Pulser-receivers employed with ultrasonic transducers and an analog or digital oscilloscope are the prime building blocks of any ultrasonic test system. 
The pulser section produces an electrical pulse to excite a transducer that converts the electrical input to mechanical energy, creating an ultrasonic wave. In pulse-echo applications, ultrasound travels through the test material until it is reflected from an interface back to the transducer. In thru- transmission applications, the ultrasound travels through the material to a second transducer acting as a receiver. 
In either case, the transducer reconverts the mechanical pulse into an electrical signal that is then amplified and conditioned by the receiver section. The resulting RF is then made available for further analysis. Since the customer chooses the waveform display and/or digitization methodology, infinite flexibility in measurement range and method may be pursued. 

Square Vs. Spike Excitation 
Spike excitation pulsers optimize broadband response and near surface resolution. 
For applications involving the testing of thin materials with high frequency transducers wher fast recovery time and broadband transducer response are important to insuring adequate time and depth resolution, Models 5072PR and 5073PR employ a spike excitation technique that produces an abrupt voltage transition followed by a recovery to the baseline. The ultra-fast rise times directly translate to broad spectral excitation resulting in wideband transducer response. It is possible to optimize transducer response by selecing pulse energy and damping values, which adjust pulse rise time, width, and voltage. In general, lower energy values and damping resistance will produce the sharpest rise times for the most efficient excitation of high frequency transducers. In fact, the 5073PR pulser electronics can achieve rise times of less than 2 ns, enabling the use of up to 50 MHz broadband transducers. 
Square wave pulsers dramatically increase sensitivity while maintaining broadband performance by tuning pulse width to the resonant frequency of the transducer.

Square wave excitation is especially useful in applications involving the testing of thick or highly attenuating materials with low frequency transducers, typically improving both penetration capability and signal-to-noise ratio. The Model 5077PR provides square wave excitation with a fast pulse rise and fall time. The pulse voltage and pulse width are adjusted directly to provide precise control over pulse shape. By tuning the period (pulse width) of the square wave to half that of the transducer center frequency, pulse energy to the transducer at its natural resonant frequency is increased. This can result in an increase in signal amplitude as great as 12 dB or more as compared with spike pulsers using the same voltage setting. The effect is especially pronounced with transducers of 5 MHz and lower frequency.

Potential increase in sensitivity using a tuned square wave pulser versus a spike pulser as a function of transducer center frequency.
Response using a Model 5073PR 75 MHz bandwidth pulser-receiver with a V215-BA-RM 50 MHz permanent delay contact transducer coupled to a 0.075 mm (0.003") metal shim
Spike excitation features sharp rise times adjusted by energy and damping values.
Square wave has controlled rise and fall times with directly adjustable voltage and pulse width.
A-scan comparison between 5073PR and 5072PR with 50 ohm damping and energy Position 1 to 5077PR set at 100 volts and tuned for frequency optimization. Gain set to noted dB level to normalize signal height from a 20 MHz delay line transducer.

Transducers 
Olympus manufactures a wide range of transducers for conventional and high frequency applications. Transducers with center frequencies between 50 kHz and 50 MHz are available for use with the manually controlled pulser-receiver line. We also offer transducers with frequencies above 50 MHz that may be used with higher frequency instruments available in our computer-controlled pulser-receiver family. Direct contact, delay line, dual, immersion, angle beam, normal incidence shear wave transducers and more are available. 
Preamplifiers 
A line of low noise preamplifiers is available in a variety of bandwidths up to 40 MHz. These preamps can be used with our pulser-receivers for increased amplification in hard to penetrate materials or to drive long cable lengths from the transducer back to a host instrument for improved signal to noise characteristics.

Applications

Transducer Characterization 
Panametrics pulser-receivers have been used as the basis for both industrial and medical transducer characterization 
systems. These instruments provide economical and reliable solutions for conventional, high frequency, and phased array transducer characterization. 
Biomedical Applications 
Panametrics instrumentation has been a choice of the discerning researcher for a variety of biomedical applications including ocular imaging, vascular imaging, tissue characterization, blood flow analysis, and bone structure characterization. 
Material Characterization 
Measurements on Young's Modulus and Shear Modulus of Elasticity and Poisson's ratio in non-dispersive isotropic engineering materials can be determined quickly and easily through computations based on sound velocities. 
Correlation of velocity, time of flight, attenuation, and spectral content can often be related to other material properties. Grain structure, particle distribution, degree of nodularity in cast iron, polymerization in plastics, and mix ratios of liquids can all be inferred ultrasonically.

Specifications*

PULSER 5072PR 5073PR 5077PR
Pulse Type 
(main bang):
Negative Negative Impulse Negative Square Wave
Rise Time 
(10% to 90%):
Typically 5 ns, 10 ns max Typically <2 ns

Typically <10 ns, 20 ns max 
(rise and fall time)

Available Pulse Voltage: 
(no load) 

-360 V -180 V selec -400 V, -300 V, -200 V, -100 V
Available Pulse Energy: 13, 26, 52, or 104 µjoules 2, 4, 8, or 16 µjoules N/A
Damping: selec 15, 17, 20, 25, 36, 50,
100, or 500 ohms
12, 14, 17, 20, 25, 33, 50, or 
100 ohms
N/A
Pulse Width: N/A N/A 10 preset fixed widths: 15-20,10, 7.5, 5.0-6.0, 3.5-4.0, 2-2.25, 1.0, 0.5, 0.25, 0.1 MHz. 
Variable +/-25% fine vernier tuning for each width.
Mode:   Pulse Echo or Thru-Transmission  
Isolation (53 dB min): Typically 62 dB at 10 MHz Typically 62 dB at 50 MHz Typically 62 dB at 10 MHz
Pulse Repetition Rate: 
(Internal)
100, 200, 500, 1000, 2000, or 5000 Hz 200, 500, 1000, 2000, 5000, 10000, or 20000 Hz

100, 200, 500, 1000, 2000, 5000 Hz, except that maximum PRF is limited to: 2000 Hz FOR 0.5 MHz tranducers, 1000 MHz for 0.25 MHz transducers, and 50 Hz for 0.1 MHz transducers.

Pulse Repetition Rate: 0-6 kHz 
(External)
0-10 kHz 0-5 kHz (observe limitations of PRF versus pulse width)
Synch Output Pulse: 3 V into 50 ohms    
External Trigger Input: 
(in series with 10 Kohms)
2.4 V into 1000 PF 
200 ns minimum pulse width
2.4 V into 1000 PF 
200 ns minimum pulse width
2.4 V into 1000 PF 
50 ns minimum pulse width
 
RECEIVER 5072PR 5073PR 5077PR
Maximum Bandwidth: 
(-3 dB, RL=50 ohms)
1 kHz - 35 MHz 1 kHz - 75 MHz 1 kHz - 35 MHz
Voltage Gain: 0-59, 1 dB steps (RL=50 ohms) 0-39, 1 dB steps (RL=50 ohms) 0-59, 1 dB steps (RL=50 ohms)
Phase:   inverting or non-inverting (internal switch)  
Attenuator Range: 0-59, 1 dB steps (RL=50 ohms) 0-49, 1 dB steps (RL=50 ohms)

0-49, 1 dB steps (RL=50 ohms)

High Pass Filter: 1 kHz (out) or 1 MHz 1 kHz (out) or 5 MHz 1 kHz (out) or 1 MHz
Low Pass Filter: 35 MHz (out) or 10 MHz 75 MHz (out) or 20 MHz 35 MHz (out) or 10 MHz
Noise: 70 µV pk-pk typical, referred to input, BW=35 MHz 200 µV pk-pk typical, referred to input, BW=75 MHz 70 µV pk-pk typical, referred to input, BW=35 MHz
Max Signal Output:   +/-1V pk., terminated in 50 ohms  
Input Resistance: 
(Thru-Transmission)
500 ohms linear range 
100 ohms > linear range
100 ohms linear range 
50 ohms at levels > linear range
500 ohms
Output Impedance: 50 ohms 50 ohms 50 ohms
Maximum Input Power: 400 mW 400 mW 500 mW
 
UNIT 5072PR,5073PR,5077PR
Input/Output: External Trigger In, Sync Out, RF Out, T/R and R: All BNC female connectors
Power Main Requirements:

100/120/220/240 VAC, 50/60 Hz

Operating Temperature: 0-50°C
Size and Weight: 7" W x 3.5" H x 9.1" D (178 mm x 89 mm x 232 mm); 5 lbs (2.3 kg)

ORDERING INFORMATION: Each model is shipped with a power cord and operator manual. Transducers and cables are sold separately. 
Our sales department is available to discuss your application in detail and to assist with transducer selection.

*All specifications are subject to change without notice.

联系方式
公司:北京泰如电子科技有限公司
状态:离线 发送信件
姓名:张文庆(先生)
电话:010-57464568
手机:13699112842
地区:北京-通州区
地址:北京市通州区土桥中街140号金隅自由筑1-1-1706
邮编:100000
QQ:3081402071
商铺:http://m.ceoie.com/bjtrdz/
去北京泰如电子科技有限公司怎么走?上图中的红点是北京泰如电子科技有限公司在通州区的具体位置标注,操作左上角地图工具可以放大缩小哦。
相关信息
[分析仪器] 推荐供应
最新发布信息
点击分享到微信、朋友圈、QQ...
字母索引:  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

首页 | 公司 | 求购 | 供应 | 商城 | 招商 | 展会 | 行情 | 品牌 | 产品

联系我们 | 刷新 | 返回顶部

©2004-2024  贸易商务资源网(ceoie.com)  版权所有